ISSN 2226-1494 · EISSN 2500-0373
Языки: ru · en

Статья: Оптимизированный метод глубокого обучения для прогнозирования дефектов программного обеспечения с использованием алгоритма оптимизации кита (2024)

Читать онлайн

Целью исследования является прогнозирование ошибки программного обеспечения с использованием долговременной кратковременной памяти (Long Short-Term Memory, LSTM).

Предлагаемая система представляет собой LSTM, обучаемую с использованием алгоритма оптимизации китов (Whale Optimization Algorithm).

Система обеспечивает экономию времени обучения. Одновременно повышается эффективность модели глубокого обучения (DL) и скорость обнаружения.

Для разработки расширенной модели LSTM применен программный пакет MATLAB 2022a. Использованы 19 баз данных дефектов программного обеспечения с открытым исходным
кодом.

Ошибочные наборы данных получены из коллекции tera-PROMISE. Для оценки эффективности модели по сравнению с другими традиционными подходами объем исследования ограничен пятью наборами эталонных данных с наиболее высоким рейтингом (DO1, DO2, DO3, DO4 и DO5). Результаты экспериментов показали,
что качество данных обучения и тестирования оказывает существенное влияние на точность прогнозирования ошибок.

При анализе на наборах данных от DO1 до DO5 видно, что точность прогнозирования существенно зависит от результатов обучения и тестирования. Три алгоритма DL, протестированные на наборе данных DO2, показали самую высокую точность (0,942) в сравнении с двумя классическими алгоритмами с использованием сверточной нейронной сети Li’s и Nevendra’s (0,922).

The goal of this study is to predict a software error using Long Short-Term Memory (LSTM). The suggested system is an LSTM taught using the Whale Optimization Algorithm to save training time while improving deep learning model efficacy and detection rate. MATLAB 2022a was used to develop the enhanced LSTM model. The study relied on 19 open-source software defect databases. These faulty datasets were obtained from the tera-PROMISE data collection.
However, in order to evaluate the model performance to other traditional approaches, the scope of this study is limited to five (5) of the most highly ranked benchmark datasets (DO1, DO2, DO3, DO4, and DO5). The experimental results reveal that the quality of the training and testing data has a significant impact on fault prediction accuracy. As a result, when we look at the DO1 to DO5 datasets, we can see that prediction accuracy is significantly dependent on training
and testing data. Furthermore, for DO2 datasets, the three deep learning algorithms tested in this study had the highest accuracy. The proposed method, however, outperformed Li’s and Nevendra’s two classical Convolutional Neural Network algorithms which attained accuracy of 0.922 and 0.942 on the DO2 software defect data, respectively.

Ключевые фразы: машинное обучение, глубокое обучение, SDP, прогнозирование дефектов программного обеспечения, WOA, алгоритмы оптимизации китов, LSTM, долговременная память, алгоритм оптимизации
Автор (ы): Алию Айхонг Анес, Имам Яу Бадамаси, Усман Али, Ахмад Абузайру, Абдулрахман Лаваль Мустафа
Журнал: НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Идентификаторы и классификаторы

УДК
004.254. Кэш-память
Для цитирования:
АЛИЮ А. А., ИМАМ Я. Б., УСМАН А., АХМАД А., АБДУЛРАХМАН Л. М. ОПТИМИЗИРОВАННЫЙ МЕТОД ГЛУБОКОГО ОБУЧЕНИЯ ДЛЯ ПРОГНОЗИРОВАНИЯ ДЕФЕКТОВ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМА ОПТИМИЗАЦИИ КИТА // НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ. 2024. №2, ТОМ 24