Архив статей журнала
Представлены результаты исследования восприятия систем поддержки принятия врачебных решений в рамках проведения ежегодной диспансеризации врачами-стоматологами в общеобразовательных организациях Минобороны России (суворовских и нахимовском военных училищах, президентских кадетских училищах и кадетских военных корпусах).
На примере рассматриваемого сценария проведена апробация прототипа системы на основе машинного обучения.
Для оценки восприятия выполнен опрос врачей-стоматологов с демонстрацией результатов работы прототипа и оценкой воспринимаемых характеристик предоставляемых результатов предсказательного моделирования.
Построена модель на основе байесовской сети для оценки рассматриваемых показателей, продемонстрировавшая повышение качества предсказания воспринимаемых показателей с учетом влияния латентных состояний субъективного восприятия оператора.
Предложенный подход в дальнейшем планируется использовать для повышения эффективности взаимодействия врача и системы поддержки принятия врачебных решений.
Целью исследования является прогнозирование ошибки программного обеспечения с использованием долговременной кратковременной памяти (Long Short-Term Memory, LSTM).
Предлагаемая система представляет собой LSTM, обучаемую с использованием алгоритма оптимизации китов (Whale Optimization Algorithm).
Система обеспечивает экономию времени обучения. Одновременно повышается эффективность модели глубокого обучения (DL) и скорость обнаружения.
Для разработки расширенной модели LSTM применен программный пакет MATLAB 2022a. Использованы 19 баз данных дефектов программного обеспечения с открытым исходным
кодом.
Ошибочные наборы данных получены из коллекции tera-PROMISE. Для оценки эффективности модели по сравнению с другими традиционными подходами объем исследования ограничен пятью наборами эталонных данных с наиболее высоким рейтингом (DO1, DO2, DO3, DO4 и DO5). Результаты экспериментов показали,
что качество данных обучения и тестирования оказывает существенное влияние на точность прогнозирования ошибок.
При анализе на наборах данных от DO1 до DO5 видно, что точность прогнозирования существенно зависит от результатов обучения и тестирования. Три алгоритма DL, протестированные на наборе данных DO2, показали самую высокую точность (0,942) в сравнении с двумя классическими алгоритмами с использованием сверточной нейронной сети Li’s и Nevendra’s (0,922).