EISSN 2414-3952
Язык: en

Статья: STATISTICAL CONVERGENCE IN TOPOLOGICAL SPACE CONTROLLED BY MODULUS FUNCTION (2024)

Читать онлайн

The notion of f-statistical convergence in topological space, which is actually a statistical convergence’s generalization under the influence of unbounded modulus function is presented and explored in this paper. This provides as an intermediate between statistical and typical convergence. We also present many counterexamples to highlight the distinctions among several related topological features. Lastly, this paper is concerned with the notions of sf-limit point and sf-cluster point for a unbounded modulus function f.

Ключевые фразы: asymptotic density, f-statistical convergence, f-statistical limit point, f-statistical cluster point
Автор (ы): Das Parthiba
Соавтор (ы): Sarkar Susmita, Bal Prasenjit
Журнал: URAL MATHEMATICAL JOURNAL

Предпросмотр статьи

Идентификаторы и классификаторы

УДК
51. Математика
Для цитирования:
DAS P., SARKAR S., BAL P. STATISTICAL CONVERGENCE IN TOPOLOGICAL SPACE CONTROLLED BY MODULUS FUNCTION // URAL MATHEMATICAL JOURNAL. 2024. Т. 10 № 2 (19)
Текстовый фрагмент статьи