EISSN 2414-3952
Язык: en
Читать онлайн

In this paper, we prove certain Littlewood-Tauberian theorems for general matrix summability method by imposing the Tauberian conditions such as slow oscillation of usual as well as matrix generated sequence, and the De la Vallée Poussin means of real sequences. Moreover, we demonstrate (N, pn) and (C, 1) - summability methods as the generalizations of our proposed general matrix method and establish an equivalence relation connecting them. Finally, we draw several remarks in view of the generalizations of some existing well-known results based on our results.

Ключевые фразы: matrix summability, weighted mean, cesàro mean, slow oscillation, tauberian theorem
Автор (ы): Jena Bidu Bhusan
Соавтор (ы): Parida Priyadarsini, Paikray Susanta Kumar
Журнал: URAL MATHEMATICAL JOURNAL

Предпросмотр статьи

Идентификаторы и классификаторы

УДК
51. Математика
Для цитирования:
JENA B. B., PARIDA P., PAIKRAY S. K. TAUBERIAN THEOREM FOR GENERAL MATRIX SUMMABILITY METHOD // URAL MATHEMATICAL JOURNAL. 2024. Т. 10 № 2 (19)
Текстовый фрагмент статьи