1. Ahmad S., Jamil M., Jaworski C.C. and Luo Y.P. 2023. Double-stranded RNA degrading nuclease affects RNAi efficiency in the melon fly. J. Pest. Sci. 97: 397-409. DOI: 10.1007/s10340-023-01637-1
2. Arjunan N., Thiruvengadam V. and Sushil S.N. 2024. Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review. Mol. Biol. Rep. 51: 355. DOI: 10.1007/s11033-023-09187-6
3. Bernhardt H.S. and Tate W.P. 2012. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biol. Direct. 7: 4. DOI: 10.1186/1745-6150-7-4
4. Bjornson S. and Oi D. 2014. Microsporidia biological control agents and pathogens of beneficial insects. In: Microsporidia: pathogens of opportunity (Eds: Weiss L.M. and Becnel J.J.). Wiley-Blackwell, pp. 635-670.
5. Cantwell G.E. 1970. Standard methods for counting Nosema Spores. Am. Bee J. 110: 222-223.
6. Desai S.D., Eu Y.J., Whyard S. and Currie R.W. 2012. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect. Mol. Biol. 21: 446-455. DOI: 10.1111/j.1365-2583.2012.01150.x
7. Fadeev R.R., Kudryavtseva Yu.S., Bayazyt K-D.K., Shuhalova A.G. and Dolgikh V.V. 2024. The optimized method to isolate dsRNA synthesized in Escherichia coli HT115(DE3). Agricultural Biology. 59: 460-472. DOI: 10.15389/agrobiology.2024.3.460eng
8. Fries I., Feng F., da Silva A., Slemenda S.B. and Pieniazek N.J. 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32: 356-365.
9. Gisder S. and Genersch E. 2015. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells. PLoS One. 10: e0117200. DOI: 10.1371/journal.pone.0117200
10. Guan R., Chu D., Han X., Miao X. and Li H. 2021. Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural Pest Control. Review Front. Bioeng. Biotechnol. 9: 753790. DOI: 10.3389/fbioe.2021.753790
11. Guan R.B, Li H.C., Fan Y.J., Hu S.R. et al. 2018. A nuclease specific to lepidopteran insects suppresses RNAi. J. Biol. Chem. 293: 6011-6021. DOI: 10.1074/jbc.RA117.001553
12. He N., Zhang Y., Duan X.L., Li J.H. et al. 2021. RNA interference-mediated knockdown of genes encoding spore wall proteins confers protection against Nosema ceranae infection in the European honey bee, Apis mellifera. Microorganisms. 9: 505. DOI: 10.3390/microorganisms9030505 EDN: CYZPFJ
13. Higes M., Martín-Hernández R., Botías C., Bailón E.G., González-Porto A.V. et al. 2009. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Rep. 1: 110-113. DOI: 10.1111/j.1758-2229.2009.00014.x
14. Higes M., Martín-Hernández R., Garrido- Bailón E. et al. 2008. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10: 2659-2669. DOI: 10.1111/j.1462-2920.2008.01687.x
15. James R.R. and Li Z. 2012. From silkworms to bees: diseases of beneficial Insects. In: Insect Pathology (Eds: Vega F.E. and Kaya H.K.). Elsevier Inc., pp. 429-459.
16. Ignatieva A.N., Timofeev S.A., Tokarev Y.S. and Dolgikh V.V. 2022. Laboratory cultivation of Vairimorpha (Nosema) ceranae (Microsporidia: Nosematidae) in artificially infected worker bees. Insects. 13: 1092. DOI: 10.3390/insects13121092
17. Lang H.Y., Wang H., Wang H.Q., Zhong Z.P. et al. 2023. Engineered symbiotic bacteria interfering redox system inhibit microsporidia parasitism in honeybees. Nat.Commun. 14: 2778. DOI: 10.1038/s41467-023-38498-2
18. Lin-Ling W., Ke-Ping C., Ze Z., Qin Y. et al. 2006. Phylogenetic analysis of Nosema antheraeae (Microsporidia) isolated from Chinese oak silkworm, Antheraea pernyi. J. Eukaryot. Microbiol. 53: 310-313. DOI: 10.1111/j.1550-7408.2006.00106.x
19. Maori E., Paldi N., Shafir S., Kalev H. et al. 2009. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect. Mol. Biol. 18: 55-60. DOI: 10.1111/j.1365-2583.2009.00847.x
20. McGruddy R.A., Smeele Z.E., Manley B., Masucci J.D. et al. 2024. RNA interference as a next-generation control method for suppressing Varroa destructor reproduction in honey bee (Apis mellifera) hives. Pest. Manag. Sci. 80: 4770-4778. DOI: 10.1002/ps.8193
21. Martín-Hernández R., Bartolomé C., Chejanovsky N., Le Conte Y. et al. 2018. Nosema ceranae in Apis mellifera: a 12 years postdetection perspective. Environ. Microbiol. 20: 1302-1329. DOI: 10.1111/1462-2920.14103
22. Ndikumana S., Pelin A., Williot A., Sanders J. L. et al. 2017. Genome analysis of Pseudoloma neurophilia: a microsporidian parasite of zebrafish (Danio rerio). J. Eukaryot. Microbiol. 64: 18-30. DOI: 10.1111/jeu.12331
23. Paldi N., Glick E., Oliva M., Zilberberg Y. et al. 2010. Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl. Environ. Microbiol. 76: 5960- 5964. DOI: 10.1128/AEM.01067-10
24. Pereira T.C. and Lopes-Cendes I. 2013. Medical applications of RNA interference (RNAi). BMC Proc. 7: K21. DOI: 10.1186/1753-6561-7-S2-K21
25. Qi Y., Wang C., Lang H., Wang Y. et al. 2024. Liposome-based RNAi delivery in honeybee for inhibiting parasite Nosema ceranae. Synth. Syst. Biotechnol. 9: 853-860. DOI: 10.1016/j.synbio.2024.07.003
26. Rodríguez-García C., Evans J.D., Li W., Branchiccela B. et al. 2018. Nosemosis control in European honey bees, Apis mellifera, by silencing the gene encoding Nosema ceranae polar tube protein 3. J. Exp. Biol. 221: jeb184606. DOI: 10.1242/jeb.184606
27. Rodrigues T.B., Mishra S.K., Sridharan K., Barnes E.R. et al. 2021. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). Front. Plant. Sci. 12: 728652. DOI: 10.3389/fpls.2021.728652
28. Romeis J. and Widmer F. 2020. Assessing the risks of topically applied dsRNA-based products to non-target arthropods. Front. Plant Sci. 11: 679. DOI: 10.3389/fpls.2020.00679
29. Schüler V., Liu Y.C., Gisder S., Horchler L. et al. 2023. Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies.Commun. Biol. 6: 229. DOI: 10.1038/s42003-023-04587-7
30. Timofeev S., Tsarev A. Senderskiy I., Rogozhin E. et al. 2019. Efficient transformation of the entomopathogenic fungus Lecanicillium muscarium by electroporation of germinated conidia. Mycoscience. 60: 197-200. DOI: 10.1016/j.myc.2019.02.010
31. Tokarev Y.S., Timofeev S.A., Malysh J.M., Tsarev A.A. et al. 2018. Hexokinase as a versatile molecular genetic marker for microsporidia. Parasitology. 15: 1-7. DOI: 10.1017/S0031182018001737
32. Wang Y., Yan Q., Lan C., Tang T. et al. 2023. Nanoparticle carriers enhance RNA stability and uptake efficiency and prolong the protection against Rhizoctonia solani. Phytopathology Research. 5: 2. DOI: 10.1186/s42483-023-00157-1
33. Zheng H., Powell J.E., Steele M.I., Dietrich C. and Moran N.A. 2017. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA. 114: 4775-4780.