EISSN 1726-3522
Язык: ru

Статья: TWO NUMERICAL TREATMENTS FOR SOLVING THE LINEAR INTEGRO-DIFFERENTIAL FREDHOLM EQUATION WITH A WEAKLY SINGULAR KERNEL (2022)

Читать онлайн

We compare the error behavior of two methods used to find a numerical solution of the linear integro-differential Fredholm equation with a weakly singular kernel in Banach space C1[a,b]. We construct an approximation solution based on the modified cubic b-spline collocation method. Another estimation of the exact solution, constructed by applying the numerical process of product and quadrature integration, is considered as well. Two proposed methods lead to solving a linear algebraic system. The stability and convergence of the cubic b-spline collocation estimate is proved. We test these methods on the concrete examples and compare the numerical results with the exact solution to show the efficiency and simplicity of the modified collocation method.

Ключевые фразы: SINGULAR INTEGRAL EQUATIONS, INTEGRO-DIFFERENTIAL EQUATION, FREDHOLM EQUATIONS, СИНГУЛЯРНЫЕ ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ, ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ, УРАВНЕНИЯ ФРЕДГОЛЬМА
Автор (ы): Бутейна Таир, Сами Сегни, Хамза Гибби, Мурад Гият
Журнал: ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ

Идентификаторы и классификаторы

УДК
517.968.7. Интегро-дифференциальные уравнения
517.983.5. Линейные уравнения в бесконечномерных линейных пространствах
eLIBRARY ID
48622365
Для цитирования:
БУТЕЙНА Т., САМИ С., ХАМЗА Г., МУРАД Г. TWO NUMERICAL TREATMENTS FOR SOLVING THE LINEAR INTEGRO-DIFFERENTIAL FREDHOLM EQUATION WITH A WEAKLY SINGULAR KERNEL // ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ. 2022. Т. 23 № 2
Текстовый фрагмент статьи