Сегодня существуют умные города, в которых за счет использования информационных технологий, датчиков и специализированной инфраструктуры повышается качество жизни жителей. При этом возникла потребность в анализе и представлении данных в некоторой системе, чтобы сделать их полезными и понятными для людей, для чего применяются информационные панели. Целью этих систем является предоставление пользователям информации для поддержки принятия решений, поэтому важно адаптировать визуализацию предоставляемой информации к их потребностям и предпочтениям. Однако анализ возможностей и преимуществ адаптивности посредством взаимодействия с пользователями - это тема, находящаяся на стадии изучения. В данной статье анализируется литература по визуализации информации в адаптируемых информационных панелях для умных городов. На основе элементов адаптируемых информационных панелей, выявленных в обзоре литературы, мы предлагаем архитектуру адаптируемой информационной панели, определяем основные характеристики пользователей информационной панели умного города и создаем прототип адаптируемой информационной панели с использованием методов, ориентированных на пользователей.
Идентификаторы и классификаторы
- eLIBRARY ID
- 50733857
Некоторые города сегодня называют умными благодаря их способности использовать информационные и коммуникационные технологии (ИКТ) для улучшения качества жизни горожан и общего функционирования города [1, 2]. Подход «умного города» включает ИКТ практически во все аспекты повседневной жизни в городском пространстве. Интеграция сервисов и платформ может быть использована в таких областях, как экономика, управление, окружающая среда, жилье, общество, мобильность и т. д. [3]. Одной из ключевых технологий «умного города» является приборная панель. По мнению Фью [4], дашборды - это визуальное отображение наиболее важной информации для поддержки пользователей в достижении одной или нескольких целей в их повседневной жизни.
Визуализации в дашбордах показывают наглядным образом - через графики и карты - информацию о ключевых показателях эффективности (KPI). Чтобы быть полезными для принятия решений, визуализации этих KPI должны быть тщательно разработаны, а затем отобраны для развертывания [5]. Чтобы удовлетворить спрос на информацию, важно учитывать характеристики пользователей. Новые формы взаимодействия могут улучшить существующие системы и создать новые платформы, способствующие развитию различных районов города. Некоторые недавние исследования в области разработки интеллектуальных градоцентрических систем показывают важность интеграции пользователя в процесс разработки и развертывания этих систем [6-8].
Список литературы
- Alvarado-López R.A. Ciudades inteligentes y sostenibles: una medición a cinco ciudades de México. Estudios Sociales. Revista de Alimentación Contemporánea y Desarrollo Regional, vol. 30, issue 55, 2020, 28 p. (in Spanish).
- Borja Zapata J.S., Arce Ruiz R.M., Soria Lara J.A. Modelo para evaluar el cumplimiento de objetivos de ciudades inteligentes. In Proc. of the Congresso Internacional “Sustentabilidade Urbana”, 2018, pp. 225-234 (in Spanish).
- Tachtler F.M. Best way to go? Intriguing Citizens to investigate what is behind smart city technologies. In Proc. of the ACM Conference on Designing Interactive Systems, 2017, pp. 28-33.
- Few S. Dashboard Confusion Revisited. Perceptual Edge, 2007, pp. 1-6. URL: http://perceptualedge.com/articles/visual_business_intelligence/dboard_confusion_revisited.pdf.
- Vila R.A., Estevez E., Fillottrani P.R. The design and use of dashboards for driving decision-making in the public sector. In Proc. of the 11th International Conference on Theory and Practice of Electronic Governance, 2018, pp. 382-388.
- Latifah A., Supangkat S.H., Ramelan A. Smart Building: A Literature Review. In Proc. of the International Conference on ICT for Smart Society, 2020, pp. 1-6.
- Cepero-Garcia M.T., Montane-Jimenez L.G. Visualization to support decision-making in cities: Advances, technology, challenges, and opportunities. In Proc. of the 8th International Conference in Software Engineering Research and Innovation (CONISOFT), 2020, pp. 198-207.
- Laramee R.S., Turkay C., Joshi A. Visualization for Smart City Applications. IEEE Computer Graphics and Applications, vol. 38, issue 5, 2018, pp. 36-37.
- Ergasheva S., Ivanov V. et al. InnoMetrics Dashboard: The Design, and Implementation of the Adaptable Dashboard for Energy. In IFIP Advances in Information and Communication Technology, vol. 582, Springer, 2020, pp. 163-176.
-
Tokola H., Groger et al. Designing manufacturing dashboards on the basis of a key performance indicator survey. Procedia CIRP, vol. 57, 2016, pp. 619-624.
-
Pettit C., Widjaja I. et al. Visualisation support for exploring urban space and place. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 1, 2012, pp. 153-158.
-
Zdraveski V., Mishev K. et al. ISO-Standardized Smart City Platform Architecture and Dashboard. IEEE Pervasive Computing, vol. 16, issue 2, 2017, pp. 35-43.
-
Shafiq S.I., Szczerbicki E., Sanin C. Proposition of the methodology for Data Acquisition, Analysis and Visualization in support of Industry 4.0. Procedia Computer Science, vol. 159, 2019, pp. 1976-1985.
-
Contreras-Figueroa V., Montané-Jiménez L.G. et al. Information visualization in adaptable dashboards for smart cities: A systematic review. In Proc. of the 9th International Conference in Software Engineering Research and Innovation (CONISOFT), 2021, pp. 34-43. EDN: PUMYYR
-
Kitchenham B. Procedures for performing systematic reviews. Keele University Technical Report TR/SE-040, NICTA Technical Report 0400011T.1, 2004, 34 p.
-
Few S. Information Dashboard Design: Displaying Data for AT-A-Glance Monitoring. Analytics Press, 2013, 260 p.
-
Zhang J., Johnson K.A. et al. Human-Centered Information Visualization. Proceedings of the International Workshop on Dynamic Visualizations and Learning, 2002, 7 p.
-
Matheus R., Janssen M., Maheshwari D. Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Government Information Quarterly, vol. 37, issue 3, 2020, article no. 101284, 2020, 10 p.
-
Protopsaltis A., Sarigiannidis P. et al. Data visualization in Internet of Things: Tools, methodologies, and challenges. In Proc. of the 15th International Conference on Availability, Reliability and Security, 2020, article no. 110, 11 p.
-
Tong X., Wu Z. Study of Chinese city "portrait" based on data visualization: take city dashboard for example. Lecture Notes in Computer Science, vol. 10919, 2018, pp. 353-364.
-
Batty M. A perspective on city dashboards. Regional Studies, Regional Science, vol. 2, issue 1, 2015, pp. 29-32.
-
Han Q., Nesi P. et al. Smart City Dashboards: Design, Development, and Evaluation. In Proc. of the IEEE International Conference on Human-Machine Systems, 2020, 4 p.
-
Dobraja I., Kraak M.-J., Engelhardt Y. Facilitating insights with a user adaptable dashboard, illustrated by airport connectivity data. Proceedings of the International Cartographic Association, vol. 1, 2018, article no. 30, 6 p.
-
Kourtit K., Nijkamp P. Big data dashboards as smart decision support tools for i-cities. an experiment on Stockholm. Land Use Policy, vol. 71, 2018, pp. 24-35.
-
Sharifi A. A typology of smart city assessment tools and indicator sets. Sustainable Cities and Society, vol. 53, 2019, article no. 101936, 15 p.
-
O'Neill D., Peoples C. Using IT to monitor well-being and city experiences. IEEE Potentials, vol. 35, issue 6, 2016, pp. 29-34.
-
Peddoju S.K., Upadhyay H. Evaluation of IoT data visualization tools and techniques. In Data Visualization, Springer, 2020, pp. 115-139.
-
Lv Z., Li X. et al. Government affairs service platform for smart city. Future Generation Computer Systems, vol. 81, 2018, pp. 443-451.
-
Vicuna P., Mudigonda S. et al. A generic and flexible geospatial data warehousing and analysis framework for transportation performance measurement in smart connected cities. Procedia Computer Science, vol. 155, 2019, pp. 226-233.
-
Purahoo Z., Cheerkoot-Jalim S. SenseAPP: An IoTBased Mobile Crowdsensing Application for Smart Cities. In Proc. of the 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering, 2020, pp. 47-52.
-
Moustaka V., Maitis A. et al. CityDNA Dynamics: A Model for Smart City Maturity and Performance Benchmarking. In the Companion Proceedings of the Web Conference, 2020, pp. 829-833.
-
Chen S., Dong H. Visualizing Toronto City Data with HoloLens: Using Augmented Reality for a City Model. IEEE Consumer Electronics Magazine, vol. 7, issue 3, 2018, pp. 73-80.
-
Brunetto O. City dashboards: The case of Trieste: Trieste overview Lecture Notes in Computer Science, vol. 10407, 2017, pp. 710-721.
-
Habibzadeh H., Kaptan C. et al. Smart City System Design. ACM Computing Surveys, vol. 52, issue 2, 2019, pp. 1-38.
-
Rolim D., Silva J. et al. Web-based development and visualization dashboards for smart city applications. Lecture Notes in Computer Science, vol. 12128, 2020, pp. 337-344.
-
Chrysantina A., Sæbø J.I. Assessing user-designed dashboards: a case for developing data visualization competency. IFIP Advances in Information and Communication Technology, vol. 551, Springer, 2019, pp. 448-459.
-
Elshehaly M., Randell R. et al. QualDash: Adaptable generation of visualisation dashboards for healthcare quality improvement. IEEE Transactions on Visualization and Computer Graphics, vol. 27, issue 2, 2021, pp. 689-699.
-
Dostal R., Pribyl O., Svitek M. City infrastructure evaluation using urban simulation tools. In Proc. of the Smart Cities Symposium Prague, 2020, 6 p.
-
Lu M., Liu S. et al. Design and Implementation of Power Information Visualization Platform Based on Smart Meter. In Proc. of the 3rd International Conference on Information Science and Control Engineering, 2016, pp. 297-301.
-
Curry E., Fabritius W. et al. A Model for Internet of Things Enhanced User Experience in Smart Environments. In Real-time Linked Dataspaces, Springer, 2020, pp. 271-294.
-
Molich R., Nielsen J. Improving a Human-Computer Dialogue.Communications of the ACM, vol. 33, issue 3, 1990, pp. 338-348.
-
Limon-Ruiz M., Larios-Rosillo V.M. et al. User-oriented representation of Smart Cities indicators to support citizens governments decision-making processes. In Proc. of the 5th IEEE International Smart Cities Conference, 2019, pp. 396-401.
-
Chan A.L., Chua G.G. et al. Practical experience with smart cities platform design. In Proc. of the IEEE World Forum on Internet of Things, 2018, pp. 470-475.
-
Few S. Why Most Dashboards Fail. Perceptual Edge, 2007, 2 p. URL: https://www.perceptualedge.com/articles/misc/WhyMostDashboardsFail.pdf.
-
Alves A.P., Milani A.M., Manssour I.H. Visual Analytics System for Energy Data in Smart Cities and Buildings. In Proc. of the IEEE International Smart Cities Conference, 2020, 8 p.
-
Rojas E., Bastidas V., Cabrera C. Cities-Board: A Framework to Automate the Development of Smart Cities Dashboards. IEEE Internet of Things Journal, vol. 7, issue 10, 2020, pp. 10128-10136.
-
Silva J., Mojica J. et al. Algorithms for the Control of Key Performance Indicators for Smart Cities. Procedia Computer Science, vol. 170, 2020, pp. 971-976.
-
Pressman R. Ingenieria del software: Un enfoque practico. 7ma. McGrawhill, 2010, 777 p. (in Spanish).
-
Ivanov V., Larionova D. et al. Design of a dashboard of software metrics for adaptable, energy efficient applications. In Proc. of the International Distributed Multimedia Systems Conference on Visualization and Visual Languages, 2019, pp. 75-82. EDN: UHQZZT
-
Young G.W., Kitchin R., Naji J. Building city dashboards for different types of users. Journal of Urban Technology, vol. 28, issues 1-2, 2021, pp. 289-309.
-
Open data, Paris. URL: https://opendata.paris.fr/pages/home/, 19 de enero 2022.
-
VancouverCity. URL: https://vancouver.opendatasoft.com/pages/help/, 19 de enero 2022.
-
Gobierno de México. URL: https://datos.cdmx.gob.mx/group/educacionciencia-y-tecnologia, 19 de enero 2022.
-
Thingsboard. URL: https://thingsboard.io/, 19 de enero 2022.
-
Oppermann R. Adaptively supported Adaptability.International Journal of Human-Computer Studies, vol. 40, issue 3, 1994, pp. 455-472.
-
Strugar D.Complex Systems: On Design and Architecture of Adaptable Dashboards, Lecture Notes in Computer Science, vol. 11771, 2019, pp. 176-186.
-
U4SSC - Collection Methodology for Key Performance Indicators for Smart Sustainable Cities, 2017, 134 p.
-
Alvarado López R. Ciudad inteligente y sostenible: una estrategia de innovación inclusiva. PAAKAT: Revista de Tecnología y Sociedad, vol. 7, issue 13, 2017, 17 p. (in Spanish).
-
Estrada E., Peña A. et al. Algoritmos para el control de indicadores clave de desempeño para Smart Cities. Research in Computing Science, vol. 147, issue 8, 2018, pp. 121-133 (in Spanish).
-
Bosch P., Jongeneel S. et al. CITYkeys indicators for smart city projects and smart cities. European Commission within the H2020 Programme, Technical Report, 2017, 306 p.
-
Cohen B. What exactly is a smart city? Co. Exist, issue 19, 2012. URL: https://www.fastcompany.com/1680538/what-exactly-is-a-smart-city, 19 de enero 2022.
-
Raymond E.S., Landley R.W. The Art of UNIX Usability. 2004. URL: http://www.catb.org/esr/writings/taouu/taouu.html, 19 de enero 2022.
-
Tedesco D., Tullis T. A comparison of methods for eliciting post-task subjective ratings in usability testing. In Proc. of the Usability Professionals Association Conference, 2006, pp. 1-9.
-
Brooke J. SUS: A 'Quick and Dirty' Usability Scale. In Usability Evaluation in Industry, CRC Press, 1996, pp. 107-114.
-
Yamamoto S., Mori H., eds. Human Interface and the Management of Information. Visual Information and Knowledge Management. Lecture Notes in Computer Science, vol. 11569, 2019, 652 p.
-
Celi E. Application of Dashboards and Scorecards for Learning Models IT Risk Management: A User Experience. Lecture Notes in Computer Science, vol. 9188, 2015, pp 153-165.
-
Wu D.T.Y., Vennemeyer S. et al. Usability testing of an interactive dashboard for surgical quality improvement in a large congenital heart center. Applied Clinical Informatics, vol. 10, issue 5, 2019, pp. 859-869. EDN: RUWUMY
-
Ullmann T., De Liddo A., Bachler M. A visualization dashboard for contested collective intelligence learning analytics to improve sensemaking of group discussion. RIED. Revista Iberoamericana de Educaci'on a Distancia, vol. 22, issue 1, 2019, p. 41-80.
-
Sauro J., Lewis J. Standardized usability questionnaires. In Quantifying the User Experience. 1st edition. Morgan Kaufmann, 2012, pp. 185-240.
-
Bangor A., Kortum P., Miller J. Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. Journal of Usability Studies, vol. 4, issue 3, 2009, pp. 114-123.
Выпуск
Другие статьи выпуска
У людей с деменцией (PwD) ухудшаются исполнительные функции, в частности их кратковременная память, и поэтому им трудно выполнять повседневные многоэтапные задачи или действия. Нет сомнений в том, что во время пандемии инвалиды и лица, осуществляющие уход за ними, были особенно уязвимы, часто изолированы, что сказывалось на их психическом и физическом здоровье. Их способность жить независимо была ограничена, что провоцировало депрессию у людей с инвалидностью и эмоциональное истощение у неформальных опекунов. Информационные технологии могут способствовать лечению деменции, улучшая качество жизни людей с инвалидностью и облегчая нагрузку на лиц, осуществляющих уход. Растет потребность в поддержке неформальных опекунов и улучшении их благополучия за счет уменьшения серьезности проблем с деменцией. В этом исследовании используются качественные методы для разработки модели с использованием технологических стратегий, которые основываются на полуструктурированных интервью, примененных к семи неформальным опекунам из двух разных стран. На основе этих интервью мы разработали идеи по внедрению решений, которые помогут лицам, осуществляющим неформальный уход, заботиться об инвалидах дома с помощью диалоговых агентов. Мы надеемся, что результаты, представленные в этом исследовании, помогут исследователям и разработчикам разработать решения, которые могут помочь людям с инвалидностью и неформальным опекунам.
Издательство
- Издательство
- ИСП РАН
- Регион
- Россия, Москва
- Почтовый адрес
- 109004, г Москва, Таганский р-н, ул Александра Солженицына, д 25
- Юр. адрес
- 109004, г Москва, Таганский р-н, ул Александра Солженицына, д 25
- ФИО
- Аветисян Арутюн Ишханович (ДИРЕКТОР)
- E-mail адрес
- igpran@igpran.ru
- Контактный телефон
- +7 (495) 9125659