Рассматривается трехмерный конвективный тепломассоперенос в ванне расплава металла под действием движущегося лазерного источника тепла. В основу математической модели с лагранжевым описанием положены уравнения Навье-Стокса, неразрывности и энергии с учетом диффузионных, конвективных и радиационных тепловых потерь. Зависящие от температуры поверхностные эффекты учитываются с использованием поверхностного натяжения (сил Марангони) при динамическом контактном угле на движущейся линии трехфазного контакта. Численное решение задачи производится методом конечных элементов с дивергентно устойчивой аппроксимацией основных переменных. Интегрирование кинематических и динамических условий на свободной поверхности производится по схеме Ньюмарка-Бассака. Производится верификация и валидация предложенного численного алгоритма. Показано влияние определяющих параметров процесса (мощности и скорости сканирования лазера) на геометрические размеры ванны с расплавом.
Идентификаторы и классификаторы
Течение вязкой несжимаемой жидкости со свободной поверхностью широко распространено в природе и является важной стадией многих физико-химических и
гидродинамических явлений, сопутствующих современным технологиям. Например,
в оборонной, космической отрасли при химическом формовании изделий из высоконаполненных полимерных композитов, в аддитивных технологиях при наращивании слоя на поверхности подложки с применением металлических порошков, электроискровом легировании, полировании металлических поверхностей с использованием
лазера, производстве электронных компонентов.
Список литературы
-
Bonn D., Eggers J., “Wetting and spreading”, Reviews of Modern Physics, 81, (2009), 739-805. EDN: MYSGHH
-
Worner M., “Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications”, Microfluidics and nanofluidics, 12:6, (2009), 841-886.
-
Mukherjee T., Debroy T., Theory and Practice of Additive Manufacturing 1st Edition, Wiley, 2023.
-
Булгаков В.К., Чехонин К.А., Липанов А.М., “Заполнение области между вертикальными коаксиальными цилиндрами аномально вязкой жидкостью в неизометрических условиях”, Инженерно-физический журнал, 57:4, (1989), 577-582.
-
Чехонин К.А., Сухинин П.А., “Движение нелинейно-вязкопластичной жидкости со свободной поверхностью при заполнении осесимметричного объема”, Математическое моделирование, 13:3, (2001), 89-102.
-
Chekhonin K.A., Sukhinin P.A., “Numerical modeling of filling axially symmetric channel with non-linearly viscoelastic fluid taking into account π effect”, Inzhenerno-fizicheskii zhurnal, 72:5, (1999), 881-886. EDN: MPDARR
-
Chekhonin K.A., Vlasenko V.D., “Modelling of capillary coaxial gap filling with viscous liquid”, Computational Continuum Mechanics, 12, (2019), 313-324. EDN: NDOANQ
-
Chekhonin K.A., Vlasenko V.D., “Three-dimensional finite element model of three-phase contact line dynamics and dynamic contact angle”, WSEAS transactions on fluid mechanics, 19, (2024), 577-582. EDN: GIOGXG
-
Chekhonin K.A., Vlasenko V.D., “Three-dimensional finite element model of the motion of a viscous incompressible fluid with a free surface, taking into account the surface tension”, AIP conference proceedings. Actual problems of continuum mechanics: experiment, theory, and applications, 207, (2023), 030007. EDN: GGALRN
-
Shikhmurzaev Y.D., "Solidification and dynamic wetting: a unified modeling framework", Physics of Fluids, 33, (2021), 072101. EDN: FPGBOR
-
Ruiter et al. R., "Contact line arrest in solidifying spreading drops", Phys. Rev. Fluids, 2, (2017), 043602.
-
Herbaut et al. R., "A criterion for the pinning and depinning of an advancing contact line on a cold substrate", Euro. Phys. J. Spec. Top., 229, (2020), 043602.
-
Gielen et al. M. V., "Solidification of liquid metal drops during impact", J. Fluid Mech, 883:A32, (2020), 20.
-
Sourais A.G., Markodimitrakis L.E., Papathanasiou A.G., "Droplet evaporation dynamics on heterogeneous surfaces: Numerical modeling of the stick-slip motion", International Journal of Heat and Mass Transfer, 207, (2023), 123992. EDN: SECEMS
-
Булгаков В.К., Чехонин К.А., Основы теории метода смешанных конечных элементов, Изд-во Хабар. политех. института, Хабаровск, 1999.
-
Rappaz M., Bullet M., Deville M., Modeling in Materials Science and Engineering, Springer Verlag, Berlin, 2003.
Выпуск
Другие статьи выпуска
В работе изучаются числа с заданным окончанием разложения по линейной рекуррентной последовательности. С использованием теории фракталов Рози получено описание возможных плотностей таких чисел, а также возможных первых разностей между ними.
Рассмотрен анализ задач оптимального управления для нелинейной системы, моделирующей нестационарный сложный теплообмен с френелевскими условиями сопряжения на поверхностях разрыва коэффициента преломления. Представлены оценки решения начально-краевой задачи, разрешимость задач управления и выведены условия оптимальности, приводящие к релейности оптимального управления.
Методом Метрополиса в системе Изинг-подобных точечных диполей, расположенных на ребрах простой кубической решетки, получено температурное поведение теплоемкости, намагниченности и магнитной восприимчивости в модели, учитывающей только ближние диполь-дипольные взаимодействия, а также модели с ограниченным дальним радиусом взаимодействия. В системе присутствуют три термодинамические магнитные фазы: дальний порядок, ближний порядок и беспорядок. Фаза дальнего порядка в модели ближайших соседей отсутствует. Фаза ближнего порядка характеризуется высоким уровнем энтропии, наведенной геометрией решетки. Внешнее магнитное поле вдоль одной из базисных осей приводит к конкуренции параметров порядка в модели с ограниченным дальним радиусом взаимодействия и к исчезновению остаточной энтропии в модели учитывающей только ближние взаимодействия. Показана нелинейная зависимость критической температуры теплоемкости от концентрации разбавления системы немагнитными вакансиями в модели с ближними взаимодействиями.
В работе изучаются проективные и инъектиные унары, а также унары, удовлетворяющие условиям, являющимся ослаблениями понятий проективности и инъективности. А именно, приводится алгебраическое описание проективных, слабо-, квази- и псевдопроективных унаров; инъективных, слабо-, квази- и псевдоинъективных унаров.
В работе дано описание ассоциированных пространств и вторых ассоциированных пространств к пространству Харди на Rn. Доказаны также некоторые результаты об ассоциированных пространствах к пространству BMO(Rn).
В работе рассматриваются задачи о сопряжении тонких упругих и жестких включений с возможным отслоением в упругих телах при наличии трещины. На трещине и в точке пересечения трещины с тонким включением используются краевые условия в виде неравенств, исключающие взаимное проникание берегов трещин и тонких включений. Установлены существование и единственность решения задач. Доказана эквивалентность двух постановок: вариационной и дифференциальной. Исследован предельный переход по параметру жесткости тонкого упругого включения.
В связи с актуальной проблемой уменьшения влияния вредных выбросов на состояние атмосферы городской среды представлена модель оптимального управления режимом работы источников загрязнения атмосферы мегаполиса. Модель предлагает математический алгоритм «справедливого» распределения выбросов в период неблагоприятных метеоусловий (НМУ), наиболее привлекательный для улучшения качества состояния атмосферы. Конструкция алгоритма основана на разработанной ранее оптимизационной математической модели распределения ограниченного ресурса социально-экономического содержания между группами людей, находящихся в дифференцируемых условиях.
В настоящей работе получены точные неравенства между наилучшими приближениями аналитических в единичном круге функций и обобщенными модулями непрерывности m-го порядка в весовом пространстве Бергмана B2,γ. Вычислены точные значения n-поперечников некоторых классов функций в весовом пространстве Бергмана.
В настоящей работе доказывается следующий результат. Число шагов в алгоритме Евклида для двух натуральных аргументов, меньший из которых имеет v цифровых разрядов в десятичной системе счисления, не превосходит целой части от дроби (v+lg(5√/Φ))/lgΦ, где Φ=(1+5√)/2, причем эта оценка достигается при каждом натуральном v. Доказывается также, что для двух других известных верхних оценок длины алгоритма Евклида справедливы частичная или асимптотическая достижимости.
В работе рассматриваются вопросы математического моделирования процесса нестационарного переноса рентгеновского излучения. Данный процесс формализован в виде начально-краевой задачи для уравнения переноса излучения, которая решается весовым методом Монте-Карло. Обсуждаются вопросы реализации предложенного метода при помощи поточно-параллельных вычислений на графическом процессоре (GPU).
Рассматривается быстропротекающий трехмерный процесс консолидации слоя металла, сформированного с использованием аддитивной лазерной технологии. В основу математической модели положены уравнения равновесия с вязкоупрогопластической реологической моделью и уравнение энергии с учетом диффузионных, конвективных и радиационных потерь. Численное решение задачи производится методом конечных элементов с использованием адаптационного алгоритма построения сеточной области в функции от градиента температуры в несвязанной постановке с решением дискретных уравнений нестационарной теплопроводности и термомеханики. Алгоритм учитывает движение источника тепла с заданной скоростью путем применения технологии «исключения» и последующего «возрождения» части материала. Непрерывное наращивание материала производится дискретно, на каждом шаге расчета, соответствующем «возрождению» очередной подобласти из «исключенных» элементов. Проводится верификация и валидация численного алгоритма. Показано влияние последовательной стратегии наращивания пяти слоев металла на распределение эффективных напряжений.
Рассматриваются задачи проектирования многослойных маскировочных оболочек для 2D-модели электропроводности. Предполагается, что эти оболочки состоят из конечного числа кольцевых слоев, заполненных изотропными средами. С использованием оптимизационного метода рассматриваемые задачи сводятся к экстремальным задачам и исследуются свойства их решений. Развивается эффективный численных алгоритм, основанный на методе роя частиц (МРЧ). Обсуждаются результаты проведенных вычислительных экспериментов.
Издательство
- Издательство
- ДВФУ
- Регион
- Россия, Владивосток
- Почтовый адрес
- 690922, Приморский край, г. Владивосток, о. Русский, п. Аякс, 10
- Юр. адрес
- 690922, Приморский край, г. Владивосток, о. Русский, п. Аякс, 10
- ФИО
- Коробец Борис Николаевич (Ректор)
- E-mail адрес
- rectorat@dvfu.ru
- Контактный телефон
- +7 (423) 2652429
- Сайт
- https://dvfu.ru