Методы и алгоритмы вычислительной математики и их приложения.
Параллельные программные средства и технологии.

Статьи в выпуске: 8

АВТОМАТИЗИРОВАННОЕ РАСПАРАЛЛЕЛИВАНИЕ ПРОГРАММ ДЛЯ ГЕТЕРОГЕННЫХ КЛАСТЕРОВ С ПОМОЩЬЮ СИСТЕМЫ SAPFOR (2022)
Авторы: Катаев Никита Андреевич, Колганов Александр Сергеевич

В статье рассмотрен подход к автоматизированному распараллеливанию программ для кластеров с помощью системы SAPFOR (System FOR Automated Parallelization). Главной целью системы SAPFOR является автоматизация процесса отображения последовательных программ на параллельные архитектуры в модели DVMH, которая является моделью программирования, основанной на директивах. Помимо этого, система SAPFOR позволяет выполнять автоматически некоторый класс преобразований над исходным кодом программы по запросу пользователя через графический интерфейс. На определенных классах задач пользователь системы SAPFOR может рассчитывать на полностью автоматическое распараллеливание, если программа была написана или приведена к потенциально параллельному виду. Также в статье описаны подходы к построению схем распределения данных и вычислений на распределенную память в модели DVMH. Эффективность полученных алгоритмов построения схем аспределения данных и вычислений продемонстрирована на примере некоторых приложений из пакета NAS Parallel Benchmarks.

Сохранить в закладках
БАЛАНСНО-ХАРАКТЕРИСТИЧЕСКИЙ МЕТОД ДЛЯ РЕШЕНИЯ ГИПЕРБОЛИЧЕСКИХ СИСТЕМ УРАВНЕНИЙ НА ТРЕУГОЛЬНЫХ РАСЧЕТНЫХ СЕТКАХ (2022)
Авторы: Головизнин Василий Михайлович, Афанасьев Никита Александрович, Горбавчев Д. Ю.

В данной статье рассматривается балансно-характеристический численный метод решения гиперболических систем уравнений на треугольных расчетных сетках. Описываются основные шаги алгоритма на примере решения двумерных уравнений мелкой воды. Метод верифицирован и проведено его сравнение с методами, разработанными другими авторами, на основных тестах для уравнений мелкой воды над ровным дном.

Сохранить в закладках
CONSTRUCTION OF THE GENERALIZED ITERATIVE METHODS USED FOR SOLUTION OF THE FREDHOLM INTEGRAL EQUATION (2022)
Авторы: Букансус Сарpа, Се Мандэ, Бутейна Таир, Хамза Гибби

In this paper, we consider the Fredholm integral equations of the second kind and construct a new iterative scheme associated to the Nyström method, which was elaborated by Atkinson to approximate the solution over a large interval. Primarily, we demonstrate the inability to generalize the Atkinson iterative methods. Then, we describe our modified generalization in detail and discuss its advantages such as convergence of the iterative solution to the exact solution in the sense norm of the Banach space С0[a,b]. Finally, we give a numerical examples to illustrate the accuracy and reliability of our generalization.

Сохранить в закладках
О РЕАЛИЗАЦИИ ПАРАЛЛЕЛЬНОГО АЛГОРИТМА ГЛОБАЛЬНОЙ ОПТИМИЗАЦИИ С ИСПОЛЬЗОВАНИЕМ НАБОРА ИНСТРУМЕНТОВ INTEL ONEAPI (2022)
Авторы: Баркалов Константин Александрович, Лебедев Илья Геннадьевич, Силенко Я. В.

В статье рассматривается параллельный алгоритм решения задач глобальной оптимизации и обсуждается его реализация с использованием набора инструментов Intel oneAPI. Предполагается, что целевая функция задачи задана как “черный ящик” и удовлетворяет условию Липшица. Изложенный в статье параллельный алгоритм использует схему редукции размерности на основе кривых Пеано, которые непрерывно и однозначно отображают отрезок вещественной оси на гиперкуб. В качестве средства для реализации параллельного алгоритма использован инструментарий Intel oneAPI, который позволяет писать один код как для центрального процессора, так и для графических ускорителей. Приведены результаты вычислительных экспериментов, полученные при решении серии сложных задач многоэкстремальной оптимизации.

Сохранить в закладках
БЕССЕТОЧНЫЙ ПЛАНАРНЫЙ МЕТОД PARTICLE IMAGE VELOCIMETRY (2022)
Авторы: Зарипов Динар Ильясович, Токарев Михаил Петрович, Лукьянов Алексей Александрович, Маркович Дмитрий Маркович

На сегодняшний день многопроходный метод PIV (Particle Image Velocimetry) широко используется в области экспериментальной механики жидкости и газа из-за его высокой надежности при решении практических задач. Однако он имеет известное ограничение, связанное с ошибками, возникающими при вычислении производных скорости, необходимых для деформации обрабатываемых PIV-изображений при повышении производительности метода. Поскольку количество ошибок увеличивается с применением схем более высокого порядка, на практике чаще всего ограничиваются первым порядком, что в свою очередь приводит к снижению пространственного разрешения. В данной работе предлагается метод, допускающий применение схем более чем второго порядка, что позволяет заметно повысить точность измерения скорости и ее производных и тем самым увеличить пространственное разрешение. Метод не требует восстановления ошибочных векторов скорости, позволяет избежать численного расчета производных скорости и легко применим на практике.

Сохранить в закладках
ИСПАРЕНИЕ И КОНДЕНСАЦИЯ ЧИСТОГО ПАРА НА ПОВЕРХНОСТИ ЖИДКОСТИ В МЕТОДЕ РЕШЕТОЧНЫХ УРАВНЕНИЙ БОЛЬЦМАНА (2022)
Авторы: Куперштох Александр Леонидович, Альянов А. В.

Исследованы закономерности процессов испарения и конденсации чистого пара в методе решеточных уравнений Больцмана. Выполнено моделирование этих процессов при постоянных во времени потоках пара на границе расчетной области. Показано, что в этом случае осуществляются квазистационарные режимы испарения и конденсации. Предложен простой численно эффективный метод задания потока пара на плоской границе расчетной области путем вычисления функций распределения на входящих характеристиках метода решеточных уравнений Больцмана. В расчетах показано, что поток массы при испарении плоской поверхности пропорционален разности плотностей насыщенного и окружающего пара при данной температуре поверхности, что хорошо согласуется с законом Герца-Кнудсена. Результаты трехмерного и одномерного моделирования методом решеточных уравнений Больцмана совпадают с высокой точностью. Показано, что отношение разности плотностей к потоку вещества на границе фаз при заданной температуре линейно зависит от времени релаксации как для испарения, так и для конденсации. Исследовано влияние температуры на интенсивность потоков испарения и конденсации чистого пара. Обнаружена зависимость процессов испарения и конденсации от времени релаксации, которое определяет кинематическую вязкость флюида.

Сохранить в закладках
ПРЕОБРАЗОВАНИЕ ПОСЛЕДОВАТЕЛЬНЫХ FORTRAN-ПРОГРАММ ДЛЯ ИХ РАСПАРАЛЛЕЛИВАНИЯ НА ГИБРИДНЫЕ КЛАСТЕРЫ В СИСТЕМЕ SAPFOR (2022)
Авторы: Колганов Александр Сергеевич, Гусев Георгий Дмитриевич

Процесс распараллеливания программ может быть затруднён ввиду их оптимизации под последовательное выполнение. Из-за этого полученная параллельная версия может быть неэффективной, а в некоторых случаях распараллеливание оказывается невозможным. Решить указанные проблемы помогают преобразования исходного кода программ. В данной статье рассматривается реализации в системе автоматизированного распараллеливания SAPFOR (System FOR Automated Parallelization) преобразований последовательных Фортран-программ, позволяющих облегчить работу пользователя в системе и существенно снизить трудоемкость распараллеливания программ. Применение реализованных преобразований в системе SAPFOR продемонстрировано на прикладной программе, решающей систему нелинейных дифференциальных уравнений в частных производных. Также было произведено сравнение производительности полученной параллельной версией с версиями, распараллелеными вручную с использованием DVM и MPI технологий.

Сохранить в закладках
АЛГОРИТМ ПАРАЛЛЕЛЬНОЙ ПРОГОНКИ ДЛЯ РЕШЕНИЯ ПРЯМОЙ И ОБРАТНОЙ ЗАДАЧ ДРОБНОГО УРАВНЕНИЯ ДИФФУЗИИ (2022)
Авторы: Акимова Елена Николаевна, Мисилов Владимир Евгеньевич, Султанов Мурат Абдукадырович, Нурланулы Е.

Работа посвящена построению параллельных алгоритмов решения прямой начально-краевой задачи и обратной задачи о восстановлении правой части для уравнения диффузии с дробной производной по времени. При использовании дополнительной информации о решении в некоторой внутренней точке обратная задача сводится к прямой задаче для вспомогательного уравнения. После применения конечно-разностных схем задачи сводятся к решению систем линейных алгебраических уравнений. Разработанные алгоритмы основаны на методе параллельной прогонки и реализованы для многоядерных процессоров с использованием технологии OpenMP. Проведены численные эксперименты для исследования производительности разработанных алгоритмов.

Сохранить в закладках