Архив статей журнала
Рассматривается трехмерная задача о распространении колебаний в ледовом покрове с линейно изменяющейся толщиной льда, вызванных движением подводного тела. Подводное тело моделируется трехмерным диполем постоянной интенсивности, который движется с постоянной скоростью вдоль канала. Диполь, движущийся в канале, моделирует движение сферического твердого тела, если интенсивность диполя достаточно мала и радиус сферы значительно меньше расстояния между диполем и стенками.
Статья посвящена решению задачи о колебаниях упругой ледовой пластины с нулевой пористостью. Колебания льда вызваны внешней нагрузкой с амплитудой, осциллирующей по времени. В отдалении от нагрузки колебания льда принимают форму стоячих волн. С помощью функции Грина исходная задача сводится к определению профилей колебаний льда по вертикальной координате, которая решается методом вертикальных мод.
В работе рассматриваются уравнения для дисперсионных соотношений, возникающие при решении задач о колебаниях ледовых пластин. Рассмотрены колебания в форме периодических гидроупругих волн в случаях упругой и пористой ледовой пластины. Колебания вызваны приложенной периодической нагрузкой. Предложены алгоритмы вычисления комплексных корней дисперсионных соотношений.
Рассмотрена система уравнений Буссинеска, описывающая конвекцию жидкости. Изучен алгоритм решения с помощью функции тока и разложения в ряд Фурье системы уравнений Буссинеска и сведения ее к системе уравнений Лоренца. Проведен анализ неподвижных точек на устойчивость. Описано поведение решения системы Лоренца при изменениях параметра r.