Архив статей журнала
Центральная идея работы заключается в утверждении, что отношение 1/137, известное из физических экспериментов как постоянная тонкой структуры, является результатом эволюции одной из компонент спектра, характерного для сложных структур различной природы. Структура здесь понимается как совокупность отношений, представляемых на числовой оси и способных к эволюции - развѐртыванию от этапа к этапу. Рассмотрена одна из ветвей эволюции предложенной ранее протоструктуры – циклической и первичной, по замыслу, системы отношений, в которой исключена специфика природных объектов. Показано, что при взаимодействии ряда разрешенных протоструктурой состояний они расщепляются и смещаются, образуя специфический вариант порядка. Результат соответствует симметричному плану, при котором основания – позиции на числовой оси задают расщепления и в то же время расщепления задают основания. Одной из характеристик полученной структурной конфигурации является инвариант – отношение 1/137. Прослеживаются этапы формирования инварианта и его происхождение от золотого сечения. Приводится аналитическое выражение, которое не отличается от измеренной постоянной тонкой структуры в пределах 2,6*10–6 %. Выдвигается предположение, что полученный инвариант характеризует предысторию и представляет собой исходную позицию того отношения, которое известно сейчас.
Рассматривается схема формирования узлов – разрешенных состояний на участке числовой оси, позволяющая при надлежащей интерпретации обсуждать пространственно-временную структуру внутреннего Солнца в плоскости эклиптики. Участок имеет границы и уже заполнен разрешенными состояниями, сформированными в процессе эволюции протоструктуры – циклической системы отношений, которая, предположительно, является общей для разных объектов природы. Протоструктура состоит из двух компонент, в предлагаемом рассмотрении участвует одна из них. Составной еѐ частью является критерий - основанная на золотом сечении и повторяющаяся в циклах группа узлов, с помощью которых заполняется числовая ось. В пределах исследуемого участка критерий действует сам на себя: при его участии в пустых интервалах оси, которые располагаются между узлами критерия, появляются новые разрешенные состояния. Их совокупность трактуется как спектр параметра порядка системы. В приложении относительный момент количества движения в Солнечной системе рассматривается как еѐ параметр порядка, он задаѐт расстояния и периоды вращения слоѐв под поверхностью Солнца. Особенностью предлагаемой модели внутреннего Солнца является быстро вращающееся стратифицированное ядро, которое расположено сразу под поверхностью. Оно пронизано системой значительных люков, но имеет также и участки, где распределение слоѐв близко к непрерывному. Структурные результаты и физические данные (за исключением гравитационного радиуса Солнца) согласуются в пределах ~1%.
Предлагается единая схема взаимодействия позиций на числовой оси, позволяющая в приложении объяснить формирование в Солнечной системе длинных циклов солнечной активности (до ~390 тыс. лет включительно) и пояса астероидов. Анализируется каркас комплекса, сформированный при взаимодействии двух циклов протоструктуры – системы отношений, которая предполагается общей для различных объектов природы. Каркас включает в себя устойчивые части, а также части, на основе которых формируются разного рода неустойчивости. Рассматриваются варианты неустойчивостей в разных частях каркаса. Ряд полученных позиций комплекса интерпретируется как спектр разрешенных состояний для параметра порядка системы; другие позиции играют роль центров симметрии. В приложении параметр порядка трактуется как относительный момент количества движения, что позволяет обсуждать пространственно-временную структуру указанных выше частей Солнечной системы в плоскости эклиптики. Модельные результаты соответствуют наблюдениям в пределах 1-4%.
Предлагается схема взаимодействия позиций на числовой оси, позволяющая в приложении объяснить формирование структуры эпох максимума и минимума в пределах 11-летнего цикла солнечной активности. Базой анализа является каркас комплекса, сформированный при взаимодействии двух циклов протоструктуры – системы отношений, которая предполагается общей для различных объектов природы. Каркас представляет собой геометрическое образование, которое включает в себя устойчивые части, а также части, на основе которых формируются разного рода неустойчивости. В работе анализируется вариант неустойчивости, которая понимается как основная. Ряд полученных позиций интерпретируется как спектр разрешенных состояний для параметра порядка системы; другие позиции играют роль центров симметрии. В приложении параметр порядка трактуется как относительный момент количества движения в плоскости эклиптики Солнечной системы. Схема позволяет рассматривать детали эволюции пространственно-временной структуры скрытого 11-летнего цикла солнечной активности. Модельные результаты соответствуют наблюдательным данным в среднем в пределах 1,4%. Обсуждается смысл чисел Вольфа.
На основании структурных соображений анализируется формирование и эволюция (развёртывание) пространственно-временных характеристик Фобоса и Деймоса – спутников Марса. Указанные элементы рассматриваются как отдельная система, в которую включены Солнце и Земля. Основой анализа является концепция самоорганизации и два её представления – протоструктура и параметр порядка. Структура трактуется как совокупность отношений на числовой оси и понимается как сеть, состоящая из узлов – разрешенных состояний и связей – сопутствующих им правил. Протоструктура, по замыслу, представляет собой исходный вариант порядка; это циклическая последовательность узлов, способная к развёртыванию от этапа к этапу. Параметр порядка объединяет подчинённые ему характеристики, которые, как и сам параметр, исходно задаются протоструктурой. Эволюция параметра порядка сопровождается появлением масштабных коэффициентов, ответственных за связь основных участников процесса и их сателлитов. Указанная выше анализируемая реальная система представляется как сложная и лишенная специфики самоорганизующаяся система, в которой в процессе эволюции появляются два сателлита вблизи одного из разрешенных состояний. Модель излагается с переносом акцента на приложение. В приложении параметр порядка трактуется как относительный момент количества движения в Солнечной системе, а указанные коэффициенты играют роль масс. Выявляются устойчивые виртуальные состояний (начальное и конечное), которые рассматриваются как набор точек отсчёта для характеристики текущего состояния системы.
Выдвигается и обосновывается гипотеза, согласно которой все рассматриваемые пространственно-временные характеристики спутников Марса зависят от выгорания Солнца. Предлагаются соотношения, связывающие текущую массу Солнца и названные характеристики. Модельные характеристики соответствует наблюдательным данным в среднем в пределах 0,07%.
Предпринимается попытка конкретизировать содержание уровня принципов симметрии, который был введён в рассмотрение Ю. Вигнером. Предлагаются аналитические выражения, объединяющие три уровня иерархии: система – подсистема – предельный случай, что позволяет рассматривать разнородные системы отношений различного
масштаба как конструкцию, наделённую общими связями. Основой моделирования является предложенная ранее протоструктура, которая представляется на числовой оси и понимается как инструмент анализа процессов самоорганизации (перехода от одного вида порядка к другому).
В системе разрешенные состояния формируются с помощью протоструктуры и образуют
отдельные уровни. Наиболее значимым среди них является уровень параметра порядка.
Выявленные для системы связи между позициями параметра порядка и подчинёнными ему характеристиками распространяются на подсистему и предельный случай с помощью
масштабных коэффициентов, которые конструируются на основе структурных соображений.
Установленные связи проверяются на примере Солнечной системы в плоскости
эклиптики. В качестве параметра порядка выступает относительный момент количества
движения. Применимость выявленных связей для планетной системы и спутниковых
подсистем демонстрируется при обращении к известным относительным характеристикам
планет и Солнца. При этом отношения масс планет и Солнца рассматриваются как масштабные коэффициенты. Атом водорода трактуется как предельный случай при использовании дополнительного масштабного коэффициента, в роли которого выступает отношение сил в атоме водорода. Согласие модельных и наблюдательных данных имеет место в пределах долей процента.
Исследуются проблемы построения модели мира человека и согласования смыслов у членов малой социальной группы в процессе их коммуникации и совместной деятельности с эволюционной, системно-теоретической, нейрофизиологической, социально-психологической и коммуникативно-деятельностной точек зрения. Ключевой момент состоит в том, как соотносится когерентность смыслов в моделях мира участников группы с когерентностью текстов, представляющих их предметные области. Модель мира, также, как и модель предметной области, состоит из трех компонентов: языкового и двух многомодальных (индивидуального и социализированного). Модель мира каждого человека является уникальной конструкцией и, несмотря на некоторое ее подобие моделям, которые формируют члены соответствующей социальной группы, требует постоянной синхронизации, что реализуется в процессе коммуникации. Помимо информационного механизма синхронизации по ключевым понятиям предметных областей в процессе коммуникации участвует интенциональный механизм, который реализуется через личностные особенности субъектов общения. Способ действия указанных механизмов раскрывается на примере коллективной деятельности и качества коммуникационной грамотности. Коммуникационная грамотность людей, как показано в статье, существенно зависит от лингвистического компонента, т.е. от умения работать с текстами на естественном языке. Это означает, что каждый человек сам должен уметь качественно писать тексты и работать со смыслами, а также понимать смыслы, заключенные в текстах, написанных другими. Это особенно важно в условиях широкого распространения различных сетевых структур на платформах интеллектуальных технологий и телекома, от социальных и экспертных сетей «коллективного разума» до сетей мгновенных сообщений.
Онтогенез и функциональная организация самовоспроизводства организма человека осуществляются взаимодействием клеток соматического и зародышевого пути, составляющих двухконтурную систему прямых и обратных связей под управлением половых клеток. Диссипация энергии развертывания информации генома соматических клеток в условиях обмена веществом и энергией с внешней средой сопровождается кумуляцией информации в геноме половых клеток. Полагаем, что причиной диспропорционирования энтропии и накопления информации является внутримолекулярная магнитная изотопия химических элементов, обеспечивающих взаимосвязь генома половых и соматических клеток.
Исследование функционирования генома в процессе взаимодействия половых и соматических клеток снимает неразрешимые противоречия между эпигенетической и синтетической концепциями эволюции и позволяет рассматривать процесс самоорганизации и развития на основе закономерностей единого Универсального эволюционизма.
В сложной самоорганизующейся системе рассматриваются сценарии расщепления узлов – компонент спектра разрешенных состояний, что позволяет в приложении объяснить формирование характеристик планетных орбит в Солнечной системе. Инструментом
исследования служит предложенная ранее протоструктура – первичная, по замыслу, система отношений, с помощью которой на числовой оси моделируются ситуации в относительных характеристиках объектов различной природы. Протоструктура состоит из жесткой и мягкой компонент – числовых последовательностей, которые, в свою очередь, состоят из циклов –
повторяющихся наборов отношений. Она предназначена для поэтапного исследования эволюции (развёртывания) наблюдаемых самоорганизующаяся систем. На основе жесткой компоненты протоструктуры формируется параметр порядка системы n, который подчиняет себе две другие относительные характеристики.
Исследуется процесс согласования двух компонент протоструктуры, в результате
которого узлы в одном из её циклов расщепляются и сдвигаются. Каждый из узлов
представляется спектром, любая позиция которого интерпретируется как отдельный элемент параметра порядка n, которому подчинёна одна из позиций на нижнем уровне иерархии.
Устойчивость спектра трактуется как следствие тождественного совпадения узлов, которые
относятся к разным узловым конфигурациям и интерпретируются взаимоисключающим образом.
Процедура выбора при согласовании узловых конфигураций является поисковой, имеет
геометрический характер, учитывает предысторию и моделирует в системе процесс
естественного отбора. Анализ неустойчивостей осуществляется по специальной методике.
Проводится подробное обсуждение шагов развёртывания системы. В приложении рассматривается формирование пространственной структуры планетных орбит в плоскости эклиптики Солнечной системы. Исходно роль параметра порядка
n играет относительный момент количества движения, который в процессе эволюции
трансформируется в спектр параметра порядка n.
Предлагается основанный на анализе отношений способ определения масс планет в Солнечной системе по отношению к массе Земли. В основу модели заложено представление о самоорганизации структур, при этом структура понимается как сеть, состоящая из узлов – разрешенных на числовой оси состояний и связей между ними – правил. Генератором разрешенных состояний является протоструктура – первичная, по замыслу, и циклически организованная совокупность отношений. Протоструктура предназначена для исследования процессов эволюции. В одном из циклов протоструктуры исследуется взаимодействие узлов на уровне параметра порядка n, позиции которого образуют спектр и задают разрешенные узлы на лежащих ниже уровнях иерархии, которых всего 6. Предлагаются связи элементов спектра с указанными подчинёнными узлами; пригодность связей демонстрируется на примере исходного состояния системы. Объектом исследования является уровень параметра порядка n в состоянии эволюционной зрелости. Для этого в приложении все характеристики абстрактной системы отношений интерпретируются в известных терминах планетной системы Солнца, которая понимается как эволюционно зрелая. Для каждой планеты одна часть относительных характеристик (расстояния, периоды обращения, ускорения) заимствуется из наблюдательных данных и переводится на n-уровень. Другая часть (массы планет и действующие на них силы) реконструируется на основе различных представлений о симметрии, характерных согласно модели для n-уровня. Роль ведущей характеристики на n-уровне играет относительный момент количества движения – в случае кругового движения площадь, описываемая движущимся телом в единицу времени при нормировке на принятую первую позицию. При усложнении взаимодействия узлов уровень параметра порядка детализируется. На n-уровне размещается среди прочих позиция вида n(m), что позволяет при известных связях определить m – массу планеты. Полученные результаты интерпретируются равным образом и с позиций абстрактной самоорганизующейся системы, и с позиций планетной системы. В среднем полученные
Исследуется эволюция (развёртывание) ряда характеристик в абстрактной системе отношений в зависимости от изменения её максимального масштабного коэффициента, что позволяет в приложении представить зависимость эксцентриситета орбиты Земли от выгорания Солнца. Используется структурный подход, который в основе исключает специфику конкретных систем. Инструментом анализа является протоструктура, при этом структура понимается как совокупность отношений, а протоструктура выступает, как её предполагаемая первооснова. Она состоит из двух компонент, наделённых циклической природой, и задаёт спектр позиций параметра порядка nk, где k – порядковый номер узла - разрешенного состояния в выделенном цикле k=1 – 10. Все нормировки выполнены на k=3, что удобно для приложения. Ранее для узла k=3 получены модельные позиции Δ3 на разных этапах эволюции, где Δ3 - расщепление позиции n3 в результате её взаимодействия с другими n-позициями в системе узлов k=1-10. Для сравнения
узлов в названной системе предложены масштабные коэффициенты, из которых выделен
наибольший. Показано также, что в результате взаимодействия компонент протоструктуры
формируется граница системы nmin, от которой зависит, с одной стороны, предельная скорость υmax/υ3, а с другой, Δ3 - расщепление позиции n3. Указанная скорость понимается как инвариант и соответствует скорости света в пределах δ=1*10-5%. В настоящей работе анализируется M/m3 - наибольший масштабный коэффициент системы, который именуется ведущим, уменьшается в процессе эволюции и играет роль управляющего параметра, от которого зависят все остальные характеристики за исключением инварианта υmax/υ3. Для M/m3 предложены: a) исходное значение; b) значение, при котором появляется расщепление Δ3, а также c) связи названных выше характеристик. На указанной основе с учётом предыстории построен дискретный сценарий развёртывания системы от исходного значения M/m3 до выбранного конечного.
Исследуется один из аспектов эволюции (развёртывания) абстрактной системы отношений, что позволяет выявить характерную для неё предельную относительную скорость и показать, что в приложении она мало отличается от скорости света. Используется структурный подход, который в основе исключает специфику конкретных систем. Инструментами анализа являются предложенные ранее протоструктура и параметр порядка n на её основе. Структура трактуется как сеть, состоящая из узлов – разрешенных состояний и их связей – правил, ответственных за устойчивость. Структура понимается как совокупность отношений, а протоструктура выступает как её предполагаемая первооснова, наделённая циклической природой и задающая спектр позиций параметра порядка nk, где k=1 ,2, 3…10 – порядковый номер узла в цикле 1:10. Названный цикл содержит, в частности, узлы n2 и n3, при этом большая часть нормировок выполнена при использовании k=3, что удобно для приложения. Рассматриваются связи между ранее выявленной исходной границей системы отношений nmin и расщеплением Δ3 для узла n3, которое также установлено на основе модельных соображений и соответствует наблюдениям. Исходно узел n2 жестко связан с границей nmin. В настоящей работе анализируется появление и эволюция связи границы nmin с узлом n3 и уход на второй план исходной связи с n2. Рассматривается процедура поиска nmin , зависящая от выбора Δ3. Позиции nmin и n3 различаются примерно на 4 порядка и трактуются как единая система. Основой анализа являются сдвиги узлов относительно исходного положения, что позволяет игнорировать различие в порядках. Процесс эволюции развёрнут как сценарий - набор следующих друг за другом шагов – структурных событий, в результате чего реализуется высокая степень совместимости узлов системы.
В приложении исследуемая система трактуется как пара Солнце (nmin) – Земля (Δ3) в плоскости эклиптики Солнечной системы. Роль nk играет относительный момент количества движения, позиция nmin задаёт границу внутреннего Солнца, позиции n2 и n3 трактуются как характеристики Венеры и Земли
- 1
- 2