Обосновывается необходимость расширения динамического диапазона в МФПУ коротковолнового ИК-спектра (SWIR). Традиционно применяемые способы обладают низкой эффективностью, в особенности, в крупноформатных матрицах с шагом не более 15 мкм. Наибольшей эффективностью расширения динамического диапазона (до 100 дБ) обладают накопительные ячейки с индивидуально изменяемой передаточной характеристикой в зависимости от яркости фрагментов наблюдаемой сцены. В работе предлагается простой в топологической реализации и эффективный способ расширения динамического диапазона, основанный на автоподстройке времени накопления индивидуально в каждой ячейке интегральной схемы считывания. При этом сохраняется высокая крутизна и линейность преобразования в накопительных ячейках с умеренной освещенностью (до 50–70 % от максимального сигнала), но снижается чувствительность в ячейках, близких к насыщению. В результате, формируется линейно-логарифмическая передаточная характеристика, обеспечивающая расширенный динамический диапазон. В работе приводятся примеры изображений с расширенным динамическим диапазоном, полученные с помощью первой отечественной SWIR-камеры формата 640×512 элементов.
В работе представлена компактная модель МОП-транзистора для криогенных температур на основе линеаризации инверсионного заряда. В базовую электростатику ядра модели включено влияние заряда поверхностных состояний с экспоненциальным энергетическим распределением, зависящего от напряжения. Выведены уравнения для тока канала и полных зарядов для квазистатической динамической модели через инверсионный заряд. Точность модели была подтверждена с помощью приборно-технологического моделирования в TCAD.
В работе представлена физическая аналитическая компактная модель МОПтранзистора, работающего от комнатной до глубоко криогенной температуры, основанная на линеаризации заряда инверсионного слоя. Показано влияние вымораживания подложки и ионизации примеси, индуцированной полем, на электростатику транзистора. Температурное масштабирование ядра модели было получено с использованием точных уравнений для ширины запрещенной зоны, эффективной плотности состояний, уровня Ферми, энергии ионизации. Основное соотношение для инверсионного заряда с внешними напряжениями было дополнено эффектом неполной ионизации. Выведено уравнение для тока канала через инверсионные заряды, и расчеты были подтверждены с помощью приборно-технологического моделирования в TCAD.