Архив статей журнала
В последнее время на место основного языка научных и инженерных расчетов выдвигается язык Julia. У ряда пользователей возникает желание работать полностью внутри “экосистемы” Julia, подобно тому, как происходит работа в “экосистеме” Python. Для Julia существуют библиотеки, покрывающие большинство потребностей научно-инженерных расчетов. Перед авторами возникла необходимость использовать символьные вычисления для задач математического моделирования. Поскольку основным языком реализации численных алгоритмов мы выбрали язык Julia, то и задачи компьютерной алгебры хотелось бы решать на этом же языке. Авторы выделили основные функциональные области, задающие разные варианты применения систем компьютерной алгебры. В каждой из областей нами выделены наиболее характерные представители систем компьютерной алгебры на Julia. В результате авторы делают вывод, что в рамках “экосистемы” Julia возможно (и даже удобно) использовать системы компьютерной алгебры.
В исследовательских задачах, требующих применения численных методов решения систем обыкновенных дифференциальных уравнений, часто возникает необходимость выбора наиболее эффективного и оптимального для конкретной задачи численного метода. В частности, для решения задачи Коши, сформулированной для системы обыкновенных дифференциальных уравнений, применяются методы Рунге–Кутты (явные или неявные, с управлением шагом сетки или без и т.д.). При этом приходится перебирать множество реализаций численного метода, подбирать коэффициенты или другие параметры численной схемы. В данной статье предложено описание разработанной авторами библиотеки и скриптов автоматизации генерации функций программного кода на языке Julia для набора численных схем методов Рунге–Кутты. При этом для символьных манипуляций использовано программное средство подстановки по шаблону. Предлагаемый подход к автоматизации генерации программного кода позволяет вносить изменения не в каждую подлежащую сравнению функцию по отдельности, а использовать для редактирования единый шаблон, что с одной стороны дает универсальность в реализации численной схемы, а с другой позволяет свести к минимуму число ошибок в процессе внесения изменений в сравниваемые реализации численного метода. Рассмотрены методы Рунге–Кутты без управления шагом, вложенные методы с управлением шагом и методы Розенброка также с управлением шагом. Полученные автоматически с помощью разработанной библиотеки программные коды численных схем протестированы при численном решении нескольких известных задач.