Архив статей журнала
Здесь дается описание алгоритмов и программного обеспечения для двух новых методов решения полиномиальных уравнений, основанных на построении выпуклого многоугольника. Первый метод позволяет находить приближенные корни многочлена с помощью многоугольника Адамара. Второй метод позволяет находить ветви алгебраической кривой вблизи ее особой точки и вблизи бесконечности с помощью многоугольника Ньютона и строить эскизы вещественных алгебраических кривых на плоскости. Указаны соответствующие геометрии и алгоритмы компьютерной алгебры, которые позволяют анализировать любые сложные случаи.
Для систем обыкновенных дифференциальных уравнений (ОДУ) с невырожденной линейной частью в общем и гамильтоновом случаях ставится задача отыскания инвариантных координатных подпространств в координатах ее нормальной формы, вычисленной вблизи положения равновесия. Приведены условия существования таких инвариантных подпространств в терминах резонансных соотношений между собственными числами линейной части системы. Дан алгоритм поиска резонансных соотношений между собственными числами без их явного вычисления, который существенно использует методы компьютерной алгебры и q-аналог субрезультантов многочлена. Обсуждается его реализация в трех распространенных системах компьютерной алгебры – Mathematica, Maple и SymPy. Приведены содержательные модельные примеры.