ISSN 2305-9052 · EISSN 2410-7034
Языки: ru · en

ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

Архив статей журнала

ОБЗОР ПРИМЕНЕНИЯ ГЛУБОКИХ НЕЙРОННЫХ СЕТЕЙ И ПАРАЛЛЕЛЬНЫХ АРХИТЕКТУР В ЗАДАЧАХ ФРАГМЕНТАЦИИ ГОРНЫХ ПОРОД (2023)
Выпуск: Т. 12 № 4 (2023)
Авторы: Ронкин Михаил Владимирович, Акимова Елена Николаевна, Мисилов Владимир Евгеньевич, Решетников Кирилл Игоревич

Оценка производительности добычи полезных ресурсов, в том числе определение геометрических размеров объектов горной породы в открытом карьере, является одной из наиболее важных задач в горнодобывающей промышленности. Задача фрагментации горных пород решается с помощью методов компьютерного зрения, таких как экземплярная сегментация или семантическая сегментация. В настоящее время для решения таких задач для цифровых изображений используются нейронные сети глубокого обучения. Нейронные сети требуют больших вычислительных мощностей для обработки цифровых изображений высокого разрешения и больших наборов данных. Для решения этой проблемы в литературе предлагается использование облегченных архитектур нейронных сетей, а также методов оптимизации производительности, таких как параллельные вычисления с помощью центральных, графических и специализированных процессоров. В обзоре рассматриваются последние достижения в области нейронных сетей глубокого обучения для решения задач компьютерного зрения применительно к фрагментации горных пород и вопросы повышения производительности реализаций нейронных сетей на различных параллельных архитектурах.

Сохранить в закладках
АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ И ИСПОЛНЕНИЕ ЭФФЕКТИВНЫХ ПРОГРАММ ДЛЯ ЧИСЛЕННЫХ АЛГОРИТМОВ (2023)
Выпуск: Т. 12 № 3 (2023)
Авторы: Алеева Валентина Николаевна

Проектировать эффективные параллельные программы для многопроцессорных архитектур сложно, так как нет четких формальных правил, которых необходимо придерживаться. Для решения этой проблемы при реализации численных алгоритмов может применяться концепция Q-детерминанта. Данная теория позволяет проводить автоматизированный анализ ресурса параллелизма алгоритма, автоматизированное сравнение ресурсов параллелизма алгоритмов, решающих одну и ту же алгоритмическую проблему, проектировать эффективные программы для реализации алгоритмов с помощью специально разработанного метода проектирования, повысить эффективность реализации численных методов и алгоритмических проблем. Результаты, полученные на основе концепции Q-детерминанта, представляют собой один из вариантов решения проблемы эффективной реализации численных алгоритмов, методов и алгоритмических проблем на параллельных вычислительных системах. Однако пока остается не решенной фундаментальная проблема автоматизированного проектирования и исполнения для любого численного алгоритма программы, реализующей алгоритм эффективно. В статье описана разработка единой для численных алгоритмов программной системы проектирования и исполнения Q-эффективных программ - эффективных программ, спроектированных с помощью концепции Q-детерминанта. Система предназначена для использования на параллельных вычислительных системах с общей памятью. Она состоит из компилятора и виртуальной машины. Компилятор преобразует представление алгоритма в форме Q-детерминанта в исполняемую программу, использующую ресурс параллелизма алгоритма полностью. Виртуальная машина исполняет программу, полученную с помощью компилятора. В статье также приведено экспериментальное исследование созданной программной системы с применением суперкомпьютера «Торнадо ЮУрГУ».

Сохранить в закладках