Архив статей журнала
Предметом данного исследования является технический объект, работа которого определяется множеством факторов, а качество функционирования характеризуется некоторым показателем. Требуется построить математическую модель, связывающую этот показатель со значениями факторов. В качестве примера исследуется влияние различных факторов на эффективность работы горелочных устройств (нагрузки, расхода воздуха, метана и биогаза, составов топлива и окислителя и других). Эффективность (качество функционирования) горелочного устройства оценивается по температуре дымовых газов. Задача решается методами машинного обучения, поскольку классические методы регрессионного анализа показали недостаточную точность. В настоящей статье исследуется эффективность метода опорных векторов, случайного леса и бустинга деревьев решений. Для численных расчетов использована локализованная версия 13.3 системы Statistica. Все три подхода машинного обучения показали существенное повышение точности модели на тестовой выборке. Наилучшие результаты в рассматриваемом примере дал метод бустинга деревьев решений. Рекомендуемая технология построения модели, обеспечивающая необходимую точность прогнозирования, сводится вначале к апробации классического регрессионного анализа (если полученная модель обеспечит необходимую точность, то она предпочтительна с точки зрения ее интерпретируемости). При недостаточной точности используются три рассмотренных метода машинного обучения, вместе с тем важен подбор параметров каждого из них, который, с одной стороны, обеспечивал бы необходимую точность, а с другой - не приводил бы к переобучению модели. Полученная модель может быть использована для оценки влияния различных факторов на эффективность работы технического объекта, а также для прогнозирования качества его функционирования, в частности, температуры дымовых газов.