Архив статей журнала
Настоящая работа посвящена развитию теории испытаний в целом и опытно-теоретического метода в частности. Авторами разработан алгоритм синтеза модели объекта испытаний, основанный на решении уравнения непараметрической идентификации динамической системы с использованием гипердельтной аппроксимации и преобразования Лапласа. В отличие от существующих данный алгоритм применим для входных и выходных сигналов произвольной формы и физических величин. Кроме того, он не требует больших вычислительных ресурсов. Алгоритм позволяет формализовать многомерную зависимость между факторами и тактико-техническими характеристиками объекта испытаний. С помощью языков программирования C++ и Python реализованы математическая библиотека идентификации модели объекта испытаний и приложение с графическим пользовательским интерфейсом для автоматизации расчетов. Представленное программное решение выполнено по аналогии с классическими моделями машинного обучения. Для обоснования возможности применения разработанного алгоритма проведен вычислительный эксперимент на различных типах входных и выходных сигналов (периодических, непериодических и случайных) с разной точностью гипердельтной аппроксимации. По результатам вычислительного эксперимента получены рекомендации по использованию алгоритма, в частности, при высоких амплитудах выходного сигнала следует увеличить количество начальных моментов гипердельтной апроксимации.