Архив статей журнала
В работе описывается система назначения персонифицированного лечения на основе прецедентов. Ее уникальной особенностью является извлечение прецедентов на основе гибридного метода, сочетающего извлечение прецедента на основе знаний с классическим способом K-ближайших соседей. Новизна предлагаемого подхода заключается в обеспечении максимальной гибкости и корректности в оценке сходимости прецедентов. В работе описаны информационные и программные компоненты системы. Используемая база знаний, как и все информационные ресурсы, строится по своим онтологиям, четко задающим их структуру и семантику. Это позволяет оперативно вносить изменения без привлечения программистов и переработки всей системы. Система реализована на основе мультиагентного подхода. На первом этапе с помощью базы знаний производятся предварительный расчет и приведение всех признаков к единой метрике, на втором - непосредственный расчет сходимости методом K-ближайших соседей. Сходимость историй болезни определяется совокупно по каждому признаку. На практике система позволяет максимально гибко и точно оценивать похожесть историй болезни, содержащих разнородные по типу признаки. Предлагаемое решение особенно эффективно в условиях дефицита медицинских знаний и данных, когда системы иного типа, в частности, основанные на знаниях, не могут предложить корректное решение.