Архив статей журнала
В работе приведен краткий теоретический обзор существующих подходов к решению задачи классификации намерений пользователей на основе текстовых сообщений. Предложен классификатор на основе текстового трансформера. Рассмотрены процессы обучения и использования модели. В рамках эксперимента обучено несколько демонстрационных вариантов классификатора для корпоративной диалоговой системы. Приведены показатели качества моделей в виде совокупности значений основных метрик и визуализаций, применяемых при оценке классификаторов
В работе представлен способ применения статистической математической модели в процессе генерации базы данных для обучения искусственной нейронной сети. Исследование проводилось на примере прогнозирования физико-химических свойств модели многокомпонентной смеси дизельного топлива и водородсодержащего газа. В результате получена нейронная сеть, которая определяет искомые величины с ошибкой 0,2%. Это позволит использовать нейронную сеть в динамических системах оценки загрязнений технологических аппаратов со стороны исследуемой углеводородной смеси без использования сторонних программных продуктов.
В статье предложена реализация простого интеллектуального помощника, работающего по модели классификации намерений. Предложен алгоритм распределенной платформы, которая определяет намерение пользователя и отвечает заготовленным ответом в один из каналов. Представлен пайплайн обработки данных и модель, работающая с полными и разреженными признаками. Обучены несколько архитектур, выбрана лучшая, с учётом метрик быстродействия и точности.
В статье исследуется применение нейронных сетей для решения вариационных неравенств. Проведены эксперименты, в рамках которых разработаны архитектуры нейронных сетей разной сложности. Эти архитектуры успешно решают широкий спектр задач, включая системы уравнений и неравенств, а также вариационные неравенства. Более быстрые и точные методы решения вариационных неравенств могут существенно повысить эффективность вычислительных процессов и оптимизацию систем. Результаты экспериментов свидетельствуют о перспективности использования нейронных сетей в этой области и могут послужить основой для дальнейших исследований и разработок.