Архив статей журнала
В данной работе рассматривается задача об охране картинной галереи в случае, когда план галереи представляет собой ортогональный многоугольник с вершинами в узлах целочисленной решетки. Проводится точная оценка на число охранников, а также разрабатывается жадный алгоритм расстановки охранников. Для реализации алгоритма выбран язык программирования Python.
В работе на данных модельной задачи рассматривается процесс оптимизации стоимости выполнения проекта при заданном (директивном) сроке его выполнения, то есть рассматриваются вопросы оптимального согласования стоимости реализации проекта и интенсивности его реализации. При этом речь идёт об использовании трудовых ресурсов различного уровня квалификации и различного уровня технической оснащённости, что выражается в различной стоимости, как оплаты труда, так и стоимости прочей оснащённости проекта. На основе модельной задачи разработан программный продукт на языке программирования C++ для численных расчётов временных характеристик комплексов работ.
За последние несколько десятилетий, в связи с повсеместным развитием информационных технологий и средств мультимедиа, значительную актуальность приобретает разработка новых методов хранения, передачи, анализа и воспроизведения данных. К числу таких методов также относятся средства обеспечения надёжности, защищённости, безопасности и конфиденциальности информации при её передаче по различным каналам связи. В данной работе рассматриваются методы шифрования информации с помощью методов компьютерной стеганографии. Изучаются способы встраивания защищаемой информации в GIF файлы. Приводятся конкретные алгоритмы реализации полученных процедур.
Работа посвящена изучению преобразования Беклунда-Бианки для поверхностей постоянной отрицательной гауссовой кривизны. Получены дифференциальные уравнения, определяющие преобразование Беклунда-Бианки. В частности, построено преобразование Беклунда-Бианки для псевдосферы.
В работе представлен набор задач творческого характера по одной из тем геометрического практикума, решение которых направлено на развитие аналитических качеств и способствующих самостоятельному продвижению учащихся в исследовательской работе.
В работе проводится обсуждение своевременного иллюстрирования теоретического курса приложениями к решению задач, являющихся математическими моделями реальных процессов. Приведён пример такого приложения, базирующийся на понятиях, как достаточно простых, изучаемых на младших курсах бакалавриата, так и весьма сложных, касающихся завершающих тем курса математического анализа.
В статье решены следующие задачи: осуществлена постановка задачи о двухслойном течении по наклонной подложке с учётом испарения на границе раздела и изучено влияние различных физико-химических параметров на структуру течения. Для моделирования течений жидкости и газопаровой смеси используется система уравнений Навье-Стокса в приближении Обербека-Буссинеска. Точное решение задачи построено на основе дифференциальных уравнений конвекции и соотношений на твёрдых границах области течения и границе раздела. Изучено влияние изменения угла наклона подложки и интенсивности температурного режима на характер течения. Для функции концентрации пара на верхней стенке канала рассмотрен случай полной абсорбции.
На основе уравнений неизотермической двухфазной фильтрации рассматривается задача движения консервативной примеси в тающем снеге. Математическая модель фильтрации воды и воздуха верифицирована с помощью экспериментальных данных.
С использованием уравнений неизотермической двухфазной фильтрации рассматривается задача о движении воды в тающем снеге. Ледовый покров рассматривается как двухфазная среда, состоящая из воды и льда. В данной постановке учитываются фазовые переходы и движение твердой фазы. В модельном случае в автомодельных преременных задача сводится к системе уравнений для нахождения пористости, температуры, скоростей фаз и давления жидкой фазы. Предложен алгоритм численного решения для автомодельной задачи.
Данная работа посвящена изучению задачи об охране картинной галереи в случае, когда план галереи представляет собой выпуклый многогранник. Проводится обзор известных ранее результатов. Приведены результаты, которые могут стать основой для разработки алгоритма расстановки охранников и его реализация на одном из языков программирования.
В работе получено точное распределение коллигативного коэффициента, ранее введенного автором для изучения силы связи между бинарными показателями в качестве альтернативы коэффициенту корреляции Пирсона, применение которого для бинарных показателей не всегда корректно. На основе этого распределения предложен новый статистический критерий, устанавливающий факт связи двух бинарных показателей. Описываются применения этого критерия к методам классификации данных и медицинским задачам дифференциальной диагностики.
В статье предлагается и обосновывается способ присвоения числовых меток (квантификация) кластерам, связанный с их построением на основе агломеративного кластерного алгоритма, рассматриваются проблемы, которые могут возникнуть при такой квантификации, в частности, возникновение числовых меток кластеров, значения которых противоречат их естественному порядку (инверсии). Предложен новый вариант алгоритма, при котором подобные инверсии не возникают.