Работы автора

ПРОМЫШЛЕННАЯ РОБОТИЗИРОВАННАЯ ИНТЕЛЛЕКТУАЛЬНАЯ РОБАСТНАЯ СИСТЕМА УПРАВЛЕНИЯ: ПРИМЕНЕНИЕ ТЕХНОЛОГИЙ КВАНТОВЫХ МЯГКИХ ВЫЧИСЛЕНИЙ И КВАНТОВОЙ ПРОГРАММНОЙ ИНЖЕНЕРИИ В НЕОПРЕДЕЛЕННЫХ УСЛОВИЯХ УПРАВЛЕНИЯ (2023)

В работе описана стратегия проектирования интеллектуальных систем управления на основе технологий квантовых и мягких вычислений. Представлен синергетический эффект квантовой самоорганизации робастной базы знаний, извлеченной из несовершенных баз знаний интеллектуального нечеткого регулятора. Разработанная технология повышает надежность интеллектуальных когнитивных систем управления в непредвиденных ситуациях управления, например, с различными типами взаимодействующих роботов. Наглядные примеры продемонстрировали эффективное внедрение схемы квантового нечеткого логического вывода в качестве готового программируемого алгоритмического решения для систем управления нижнего исполнительного уровня, встроенных в стандартную плату, а также квантовое превосходство квантового интеллектуального управления классическими объектами управления, расширяя тезис Фейнмана-Манина. Обсуждается корректная физическая интерпретация процесса управления самоорганизацией на квантовом уровне на основе квантовых информационно-термодинамических моделей обмена и извлечения квантовой (скрытой) ценной информации из/между классическими траекториями частиц в модели «рой взаимодействующих частиц». Продемонстрирован новый информационный синергетический эффект: из двух ненадежных баз знаний нечеткого регулятора в режиме реального времени создается робастная база знаний квантового нечеткого регулятора. Этот эффект имеет чисто квантовую природу и использует скрытую квантовую информацию, извлеченную из классических состояний. Обсуждаются основные физические и информационно-термодинамические аспекты модели квантового интеллектуального управления классическими объектами управления.

Издание: ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ
Выпуск: Т. 36 № 1 (2023)
Автор(ы): Ульянов Сергей Викторович, Решетников Андрей Геннадьевич, Зрелова Д. П.
Сохранить в закладках
КОГНИТИВНЫЕ РЕГУЛЯТОРЫ: ТЕХНОЛОГИИ МЯГКИХ ВЫЧИСЛЕНИЙ И ИНФОРМАЦИОННО-ТЕРМОДИНАМИЧЕСКИЙ ЗАКОН САМООРГАНИЗАЦИИ ИНТЕЛЛЕКТУАЛЬНОГО УПРАВЛЕНИЯ (2023)

В работе рассматривается методология проектирования интеллектуальных когнитивных систем управления сложными динамическими системами. Кратко описаны информационные и термодинамические подходы, объединяющие однородным условием критерии динамической устойчивости, управляемости и робастности. Обозначены проблемы обучения и адаптации нечеткого регулятора, которые являются актуальными в современной теории управления. Многие существующие решения используют модели искусственных нейронных сетей, основанные на алгоритме обратного распространения ошибки, многослойной структуре Кохонена и т.д. К сожалению, подобные алгоритмы не гарантируют требуемого уровня надежности и точности управления в сложных и непредвиденных ситуациях. Предложено одно из решений проблемы разработки системы когнитивного управления. Оно заключается в поиске конструктивного решения задач проектирования баз знаний и интеллектуального робастного когнитивного управления в заданном проблемно-ориентированном приложении. Сравниваются различные типы регуляторов, в том числе интеллектуальный регулятор на основе эмоционального обучения мозга. Описаны преимущества проектирования робастных баз знаний на основе программно-алгоритмического комплекса Оптимизатор баз знаний (SCOptKBTM) на мягких вычислениях. Рассматривается одна из ключевых задач современной робототехники - разработка технологий когнитивного взаимодействия, позволяющих выполнять интеллектуальные функции управления за счет перераспределения знаний и управления на программном уровне. На практическом примере показана эффективность предложенной гибридной когнитивной системы управления, повышающей точность и надежность распознавания ментальных команд.

Издание: ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ
Выпуск: Т. 36 № 1 (2023)
Автор(ы): Ульянов Сергей Викторович, Шевченко А. А., Шевченко А. В., Зрелова Д. П.
Сохранить в закладках
КОГНИТИВНОЕ ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ. ЧАСТЬ 2: КВАНТОВЫЙ АЛГОРИТМ НЕЧЕТКОГО ВЫВОДА В ИНТЕЛЛЕКТУАЛЬНОЙ КОГНИТИВНОЙ РОБОТОТЕХНИКЕ (2023)

В первой части статьи[1] обсуждалась система оценки эмоций оператора с применением глубокого машинного обучения на основе мягких вычислений и проектирование когнитивной системы управления. Данная работа развивает подход когнитивного интеллектуального управления, описывая стратегию проектирования интеллектуальных систем когнитивного управления на основе квантовых и мягких вычислений. Продемонстрирован синергетический эффект квантовой самоорганизации базы знаний, извлеченный из не робастных баз знаний интеллектуального нечеткого регулятора. Применяется информационно-термодинамический закон квантовой самоорганизации оптимального распределения базисных качеств управления (устойчивость, управляемость и робастность) и закон квантовой информационной термодинамики о возможности извлечения дополнительной полезной работы на основе извлеченной квантовой информации, скрытой в классических состояниях. Сформированная (без нарушения второго закона квантовой термодинамики) на основе извлеченного количества скрытой квантовой информации «термодинамическая» сила управления позволяет роботу (как объекту управления) совершить количественно большую полезную работу по сравнению с количеством затраченной (на извлечение квантовой скрытой информации) работу. Гарантированное достижение цели управления роботом осуществляется на основе спроектированной интеллектуальной когнитивной системы управления с применением инструментария квантового оптимизатора баз знаний QCOptKBTM, в структуру которого включен квантовый нечеткий вывод - КНВ. Квантовый алгоритм самоорганизации не робастных баз знаний КНВ структурно опирается на синергетические эффекты от скрытой квантовой информации для осуществления реализации оптимального распределения качеств управления. Данная технология позволяет повысить надежность интеллектуальных когнитивных систем управления в ситуациях управления в условиях опасности, описанных с помощью когнитивного нейроинтерфейса и различных типов взаимодействия с роботами. Примеры продемонстрировали эффективность введения схемы КНВ в качестве готового программируемого алгоритмического решения для встраиваемых интеллектуальных систем управления. Показана возможность применения нейроинтерфейса на базе когнитивного шлема с квантовым нечетким регулятором для управления транспортным средством.

Издание: РОБОТОТЕХНИКА И ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА
Выпуск: Т. 11 № 2 (2023)
Автор(ы): Ульянов Сергей Викторович, Зрелова Д. П., Шевченко А. В., Шевченко А. А.
Сохранить в закладках