В статье рассматривается анализ адекватности марковских моделей параметров частично-когерентных сигналов в радиотехнических системах на основе стохастических дифференциальных уравнений, проведенный в программной среде MATLAB. Представлены результаты моделирования одномерных негауссовских и гауссовских непрерывных, дискретно-непрерывных и смешанных случайных процессов. Методом функциональной (квазигауссовской) аппроксимации осуществляется представление многомерной плотности распределения вероятностей через одномерные плотности компонент и элементы корреляционной матрицы векторного случайного процесса. Для полученных в результате такого представления многомерных плотностей распределения вероятностей и синтезированных на их основе многомерных стохастических дифференциальных уравнений рассмотрено моделирование векторных случайных процессов, описывающих параметры частично-когерентных сигналов в непрерывных каналах связи. Производится оценка соответствия полученных моделей теоретическим распределениям по критерию согласия Колмогорова-Смирнова. Исследуются диапазоны изменений параметров, входящих в состав СДУ, при которых модель можно считать состоятельной, а также влияние параметров на форму рассматриваемых распределений. По полученным результатам можно оценить диапазоны изменения параметров моделей, определяющих вид стохастических дифференциальных уравнений, при которых выполняются требования адекватности полученных моделей частично-когерентных в пространственном и частотном смысле сигналов в радиотехнических системах.