Приведены условия, необходимые для функционирования искусственного интеллекта. Определены основные правила успешного ведения образовательной деятельности. Приведены группы математических методов интеллектуального анализа данных. Показана эффективность применения современных методов Data Mining, Big Data и Learning Analytics в сфере образования. Выделены основные типы исследовательских вопросов для анализа и улучшения образовательных технологий с использованием Learning Analytics. Предложен принцип накопительного измерения для оценки условия соответствия, определяющего пропускную способность алгоритмов нейросети и влияющего на успешность обучения. Выделено направление использования искусственного интеллекта при формировании адаптивной среды обучения, предназначенной для конкретного индивидуума с учетом его когнитивных особенностей. Показана возможность использования нейросети для анализа эмоционального состояния учащихся, а также настройки учебной среды в соответствии с этим состоянием. По аналогии с упрощенной блок-схемой обучения нейронной сети разработана модель адаптивного обучения на основе технологий искусственного интеллекта. При адаптивном обучении с учетом индивидуальных когнитивных способностей обучаемого система обрабатывает процесс получения знаний в виде анализа его достижений, ошибок, физического, эмоционального состояний и других параметров. В результате собранной и обобщенной информации дорабатывается программа, адаптированная под ученика, при этом происходит постоянное самообучение и усовершенствование самой системы. Обоснованы актуальность и перспективы дальнейшего внедрения нейронных сетей в образовательный процесс в целом, и в педагогическое образование в частности, позволяющие обеспечить индивидуальную траекторию обучения по каждому предмету для каждого ученика с учетом его возможностей и способностей.