В статье продолжается рассмотрение изменившихся подходов к контрольно-оценочной деятельности в соответствии с требованиями обновленного ФГОС основного общего образования. В публикации «Внутришкольный контроль: система оценки предметных результатов по информатике (уровень основного общего образования)» («Информатика в школе», № 4-2023) рассматривалось в целом внутришкольное оценивание и его компоненты. В данной статье подробно представлено использование формирующего оценивания (оценки для обучения) в текущем и тематическом контроле образовательных результатов по информатике. Представлены характеристики формирующего оценивания, опыт использования для повышения качества обучения и применение различных техник оценивания для обучения. На конкретных примерах различных техник формирующего оценивания, заданий, критериев оценивания и перевода баллов в отметки продемонстрировано различие в оценочных материалах для текущего и тематического контроля при изучении информатики.
Идентификаторы и классификаторы
Формирующее оценивание — текущее оценивание, помогающее направлять, формировать процесс обучения. Формирующее оценивание называют оцениванием для обучения — оно позволяет понять, как происходит усвоение учебного материала обучающимся, на каком уровне учащийся усваивает этот материал, какие образовательные стратегии подходят для освоения конкретного материала наилучшим образом, какая адресная поддержка необходима каждому конкретному учащемуся и как правильно ее оказать. Для отечественного общего образования формирующее оценивание можно считать новым педагогическим инструментом для повышения образовательных результатов обучающихся. Хотя его исследование и использование у нас начались более 20 лет назад, однако до сих пор формирующее оценивание так и не получило широкого распространения.
Список литературы
1. Босова Л. Л., Босова А. Ю., Аквилянов Н. А. Информатика. 7–9 классы. Сборник задач и упражнений. 2-е изд., стер. М.: БИНОМ. Лаборатория знаний, 2019. 224 с.
2. Босова Л. Л., Самылкина Н. Н. Внутришкольный контроль: система оценки предметных результатов по информатике (уровень основного общего образования) // Информатика в школе. 2023. № 4. С. 3–19. EDN: KEVDSS. DOI: 10.32517/2221- 1993-2023-22-4-3-19.
3. Босова Л. Л., Самылкина Н. Н. Система оценки достижений планируемых предметных результатов освоения учебного предмета «Информатика»: методические рекомендации. М.: Институт стратегии развития образования, 2023. 83 с.
4. Землянская Е. Н. Формирующее оценивание (оценка для обучения) образовательных достижений обучающихся // Современная зарубежная психология. 2016. Т. 5. № 3. С. 50–58. EDN: XRNITT. DOI: 10.17759/jmfp.2015050306.
5. Зенкина С. В., Есикова Ю. В. Интерактивные инструменты формирующего оценивания // Информатика и образование. 2018. №. 5. С. 10–15. EDN: USITPF.
6. Крылова О. Н., Бойцова Е. Г. Технология формирующего оценивания в современной школе: учебно-методическое пособие. СПб.: Каро, 2015. 128 с. EDN: WGGIXA.
7. Кузнецова Е. Ю., Самылкина Н. Н. Информатика. Основы логики: 7–9 классы. М.: БИНОМ. Лаборатория знаний, 2013. 184 с.
8. Мосина М. А. Инструменты формирующего оценивания в практике работы современной школы // Гуманитарные исследования. Педагогика и психология. 2020. № 1. С. 18–27. EDN: LEKHSG. DOI: 10.24411/2712-827X-2020-10102.
9. Спецификация контрольных измерительных материалов для проведения в 2024 году основного государственного экза- мена по информатике // ФИПИ. https://fipi.ru/oge/demoversiispecifikacii-
kodifikatory#!/tab/173801626-5
10. Федеральная рабочая программа основного общего образования. Информатика (базовый уровень) (для 7–9 классов образовательных организаций). https://edsoo.ru/wp-content/ uploads/2023/08/15_ФРП-Информатика-7-9-классы_база.pdf
11. Федеральная рабочая программа основного общего образования. Информатика (углубленный уровень) (для 7–9 классов образовательных организаций). https://edsoo. ru/wp-content/uploads/2023/08/16_ФРП_Информатика_7-9- классы_угл.pdf
12. Bloom B. S., Hastings J. T., Madaus G. F. Handbook on formative and summative evaluation of student learning. New York: McGraw-Hill, 1971. 923 p.
13. Fuchs L. S., Fuchs D. Effects of systematic formative evaluation: A meta-analysis // Exceptional Children. 1986. Vol. 53. No. 3. P. 199–208. DOI: 10.1177/001440298605300301.
Выпуск
Другие статьи выпуска
В статье рассмотрены задания раздела «Моделирование» курса информатики среднего общего образования. Предложенные задания иллюстрируют основные понятия и идеи многопоточных процессов.
Первое задание представлено в виде кейса. Работая над заданием, обучающимся необходимо продумать план действий для решения поставленной задачи, представить план в виде таблицы и диаграммы. В результате работы необходимо подвести обучающихся к выводу о необходимости разделения всего процесса на части и о параллельном выполнении каждой части с целью эффективного распределения времени.
Второе задание предназначено для подготовки обучающихся к единому государственному экзамену по информатике 2024 года (задание 22 «Построение математических моделей для решения практических задач. Архитектура современных компьютеров. Многопроцессорные системы»).
При разработке и построении вычислительной компьютерной модели, последующей визуализации числовых данных, проведении компьютерного эксперимента с целью анализа данных продолжается процесс формирования функциональной грамотности обучающихся.
В статье рассмотрены подходы к программному решению задач ЕГЭ по информатике на IP-адреса и маски подсетей методом перебора. Задачи этого типа включены в демонстрационный вариант контрольно-измерительных материалов 2024 года. Хотя составители заданий предлагают решать задачи этого типа аналитически, все шаги решения успешно автоматизируются. В статье приводятся различные варианты решения типовых задач на языках Python и PascalABC. NET, в том числе рассматривается использование модуля ipaddress из стандартной библиотеки языка Python и специальных классов для работы с сетевыми адресами из модуля school для PascalABC. NET. Приемы, предложенные в статье, могут быть полезны для учащихся, хорошо владеющих программированием, позволяя им сэкономить время при решении данного класса заданий ЕГЭ.
В статье представлен проект, направленный на популяризацию инженерного образования, развитие инженерного мышления, цифровых компетенций, способности к пространственному воображению у школьников, в том числе детей с ограниченными возможностями здоровья (ОВЗ). Проект подразумевает проведение в рамках курса «Проектирование 3D-моделей композиционных изделий в среде КОМПАС-3D» дополнительных практических занятий в компьютерном классе с программой КОМПАС-3D — дополнительное обучение по 3D-моделированию как профессиональная ориентация на современные инженерные специальности. Наша задача — объяснить школьникам перспективы и востребованность профессии инженера-конструктора. Система дополнительного образования сегодня предоставляет возможность детям обнаружить и развить свои таланты по разным направлениям: техническое, художественное, туристско-краеведческое, социально-педагогическое и др., что поможет им развить индивидуальные способности, добиться больших результатов, самоопределиться профессионально и личностно. Особенно это касается детей с ограниченными возможностями здоровья, так как именно в сфере дополнительного образования они смогут реализовать свой потенциал в соответствии со своими интересами, возможностями и желаниями. Именно для них мы старались разработать дополнительную общеразвивающую программу с учетом особенностей развития обучающихся и создать специальные условия, без которых нельзя или затруднено овладение этими программами.
Функциональная грамотность, понимаемая как способность применять знания, умения и навыки для решения жизненных задач в различных сферах, может развиваться на уроках информатики за счет постановки особенных задач. Как правило, к таким задачам относятся проекты. Каждый проект предполагает актуальность, проблематику, цель, этапность, план и задачи выполнения, а также предвосхищение результата. В статье представлен опыт реализации проекта «Книга своими руками», который создает эффективные условия для развития нескольких видов функциональной грамотности, а также способствует гармоничному развитию личности обучающихся. Описанный проект может быть реализован среди школьников любого возраста и при любой форме обучения (очной или дистанционной, урочной и внеурочной). Можно модифицировать каждый компонент проекта, начиная с темы и заканчивая программным обеспечением. Все зависит от уровня подготовки и потенциала развития учеников. Проект можно дорастить, добавив защиту проекта как этап публичного представления опыта.
Одной из наиболее сложных тем школьного курса алгоритмизации и программирования является рекурсия. Использование среды графического исполнителя (ГРИС) позволяет сформировать у школьников ментальную алгоритмическую схему принципов построения и работы рекурсивных программ, которая упростит восприятие более сложных аспектов этой темы на дальнейших этапах обучения.
Не выходя за рамки ограниченных возможностей среды ГРИС, на простых наглядных примерах объясняются следующие понятия: рекурсивный вызов процедуры, отложенный возврат из процедуры, условие продолжения рекурсии, прямой и обратный шаги рекурсии. Показывается, как с помощью рекурсии могут быть реализованы цикл ПОКА и цикл ДО.
На примере нестандартной задачи рисования квадрата демонстрируется, как введение рекурсии приводит к сокращению размера программы и времени ее выполнения. Приводятся примеры задач для графического исполнителя, решения которых могут быть построены только с использованием рекурсии. Показывается, как рекурсия расширяет возможности позиционирования графического исполнителя.
Для проведения учебных занятий предлагается использовать независимую от вычислительной платформы реализацию ГРИС «Букашка», которая полностью совместима с ГРИС «Кенгурёнок РУ» и может быть интегрирована в информационную среду образовательной организации.
Аннотация В статье представлена и подробно описана лабораторная работа «Цифровая схемотехника и алгебра логики: создание цифровых устройств в онлайн-симуляторе», проводимая для старших школьников в МГТУ имени Н. Э. Баумана. Во введении показано место занятия в системе взаимодействия организаций среднего общего и высшего уровней образования, на основе рассмотренных проблем образования в области цифровой схемотехники приведено обоснование необходимости данной лабораторной работы. Практико-ориентированный характер рассмотренной лабораторной работы по информатике обуславливает необходимость применения современных средств моделирования. В данной лабораторной работе используется онлайн-среда Logic. ly, позволяющая создавать и исследовать цифровые устройства: полусумматор, сумматор, триггеры, мультиплексоры, дешифраторы. Подробно описаны основные характеристики, структура и ход занятия, предметное содержание и межпредметные связи, целевые предметные и метапредметные результаты на основе современного компетентностного подхода.
Сегодня в образовательном процессе происходят существенные изменения, затрагивающие различные его стороны: к традиционным методам и технологиям добавляются инновационные, появляются новые формы взаимодействия с обучающимися с использованием информационных технологий, обучение становится более личностно- и практико-ориентированным.
Однако, несмотря на все нововведения, ключевой фигурой в процессе обучения по-прежнему остается педагог, личностные и профессиональные качества которого играют важную роль в процессе становления личностей обучающихся. А значит, необходимо искать пути оптимизации подготовки будущих учителей, направленные на формирование тех качеств личности педагога, которые будут способствовать организации эффективного и результативного процесса обучения и воспитания подрастающего поколения.
С 2021 года Министерством просвещения Российской Федерации совместно с Академией Минпросвещения России была начата работа по внедрению в образовательные организации профильных психолого-педагогических классов и их развитию. На сегодняшний день существует уже более 3300 классов в 80 регионах нашей страны, а к декабрю 2024 года их должно стать не менее 5000. Уже на этапе школьного обучения целесообразно формировать у учащихся базу знаний и умений в педагогической области, которая послужит основой для формирования навыков, а также для дальнейшего развития и совершенствования в этой области. Соответственно, важной становится практическая составляющая процесса обучения. Одним из учебных предметов, в рамках которого можно организовать серьезную практическую деятельность по погружению в профессию, является «Индивидуальный проект».
В статье представлены методические рекомендации по организации проектной деятельности, направленной на формирование знаний и умений в педагогической области, в психолого-педагогических классах в рамках учебного предмета «Индивидуальный проект». Эта деятельность организуется с применением онлайн-сотрудничества. Основу данной проектной деятельности составляет синергия практико-ориентированного подхода, межпредметных связей, информационных технологий и профориентационной работы. Результатом выполнения проекта каждого обучающегося должен стать индивидуальный готовый продукт — цифровой образовательный ресурс. Размещение таких продуктов в едином пространстве позволит приблизить обучающихся к пониманию того, что такое цифровая образовательная среда и как ее можно использовать в профессиональной деятельности.
В статье рассматриваются возможности использования табличного процессора Excel, изучаемого на уроках информатики, в сопряжении с такой дисциплиной, как химия. Обосновывается проведение интегрированного урока по информатике и химии. Приводится методическая разработка урока по теме «Электронные таблицы в исследовании свойств электролитов». На этапе актуализации при помощи интерактивного теста организовано повторение знаний по информатике о табличном процессоре Excel, а также по химии об электролитах и неэлектролитах, электролитической диссоциации, зависимости электропроводности электролитов от разных факторов. На мотивационно-целевом этапе урока используется такой методический прием, как «Цитирование высказываний известных людей». На этапе применения знаний и умений учащиеся проводят мини-исследование «Зависимость электропроводности растворов электролитов от концентрации», в ходе которого применяют знания и умения по информатике для проведения химических расчетов, оформления и обработки полученных экспериментальных данных, а также для построения зависимости. На этапе подведения итогов урока и рефлексии учащимся предлагается принять участие в автоматизированном опросе, результат которого — «облако слов». Домашнее задание включает выполнение расчетов по химии с помощью табличного процессора Exсel.
Издательство
- Издательство
- ОБРАЗОВАНИЕ И ИНФОРМАТИКА
- Регион
- Россия, Москва
- Почтовый адрес
- 119270, Москва, а/я 15
- Юр. адрес
- 119261, г Москва, Ломоносовский р-н, Ленинский пр-кт, д 82/2, ком 6
- ФИО
- Рыбаков Даниил Сергеевич (ДИРЕКТОР)
- Контактный телефон
- +7 (___) _______