Мышечная дистрофия Дюшенна является одной из наиболее распространенных наследственных миодистрофий.
Причиной данного заболевания с X-сцепленным рецессивным типом наследования являются мутации гена DMD, приводящие к отсутствию кодируемого им белка дистрофина или нарушению его функции. Потеря дистрофина приводит к тяжелым дегенеративным процессам у пациентов, особенно в мышечных тканях; следствием этих процессов становятся нарушение функционирования мышц, утрата способности к самостоятельному перемещению, дыхательная недостаточность, кардиомиопатии и др.
Со времени работ Гийома Бенджамена Армана Дюшенна в XIX веке прошло более 160 лет. Несмотря на усилия множества исследователей, разрабатывавших различные терапевтические подходы, призванные если не излечить, то хотя бы облегчить состояние пациентов, немногие из них позволили значительно повлиять на заболевание.
Подходы, связанные со специфической терапией ишемии и фиброза в пораженных мышцах, коррекцией гормональной регуляции роста мышечных тканей, методы, направленные на предотвращение избыточного накопления
ионов кальция в миоцитах и усиление протеолитических процессов, подавление оксидативного стресса в мышцах и пр., до настоящего времени не показали высокой эффективности как самостоятельно, так и в сочетании с глюкокортикостероидами. Применение глюкокортикостероидных препаратов позволяет замедлить развитие заболевания, но средняя продолжительность жизни пациентов до сих пор не превышает 30–40 лет, большую часть из которых они проводят в инвалидном кресле, при этом качество жизни пациентов бывает дополнительно снижено из-за регулярно развивающихся побочных эффектов.
Идентификаторы и классификаторы
Мышечная дистрофия Дюшенна (МДД) – наследственное заболевание c Х-сцепленным рецессивным
типом наследования, связанное с нарушением функции
белка дистрофина. Белок кодирует один из длиннейших
генов (2,3 млн оснований, из которых 11 000 оснований
входят в кодирующую последовательность), выявленных к настоящему времени, включающий 79 экзонов
[1]. Данный белок обеспечивает стабилизацию мышечных волокон, связывая актин с комплексом внутриклеточных, трансмембранных и внеклеточных гликопротеинов [2]. Кроме того, его обнаруживают в области
нервно-мышечного соединения [3]. Чаще всего причиной заболевания становятся крупные делеции (около 70 %), приводящие к потере 1 и более экзонов, сгруппированные преимущественно в 2 регионах: экзоны
45–55 и 2–20. Весомую долю (около 20 %) каузативных
мутаций составляют небольшие мутации, из которых
чаще всего (порядка 10 % случаев) встречаются точечные нонсенс-мутации. Выявляли также крупные дупликации (порядка 10 %), небольшие (от нескольких
нуклеотидов) делеции и инсерции, нарушения сайтов
сплайсинга [1, 4, 5]. Кроме того, имеются данные
о влиянии иных генов на развитие МДД. Так, E. Pegoraro
и соавт. в 2011 г. сообщали о влиянии аллеля гена SPP1,
кодирующего остеопорин, на более быстрое прогрессирование заболевания и ответ на терапию глюкокортикостероидами (ГКС) [6].
Мышечная дистрофия Дюшенна считается одним
из самых распространенных среди редких наследственных заболеваний. Частота, по разным оценкам, составляет в различных регионах до 1 случая на 3500–
9000 новорожденных мужского пола [7, 8], возраст
выявления заболевания – от 2 до 4 лет. Развитие заболевания связано с прогрессирующими дегенеративными процессами в мышечных тканях, потерей мышечных волокон и фиброзом, приводящими к общей
мышечной слабости и нарушениям двигательной активности. На более поздних этапах пациенты лишаются возможности независимой ходьбы, возникают фатальные нарушения сердечной и дыхательной
деятельности. Уже к 10–12 годам многим пациентам
требуется инвалидная коляска, а к 20 годам проблемы
с дыхательной системой часто приводят к необходимости принудительной вентиляции легких. И даже при
ее использовании средняя продолжительность жизни
больных составляет от 20 до 40 лет [9, 10]. Нарушения
функционирования миокарда часто наблюдаются уже
с 6 лет, и у большинства (до 95 %) пациентов на терминальной стадии заболевания [11]. Также у детей наблюдают легкое отставание умственного развития.
Со времени описания заболевания во второй половине XIX века возможности врачей в терапии МДД
постоянно развивались, особенно в XX веке. Среди
медикаментозных подходов наиболее результативными оказались связанные с ГКС (см. рисунок).
Развитие терапевтических подходов
Вторая половина XIX века. Электромиостимуляция.
Французский невролог Гийом Бенжамен Арман Дюшенн описывал в 1861 и 1868 гг. собственные клинические наблюдения заболевания, позднее получившего его имя, у группы молодых пациентов и пытался
применять в их терапии разработанную им методику
поверхностной электростимуляции мышц без повреждения тканей с использованием углецинковых элементов питания [12, 13]. Подобные же попытки предпринимались вплоть до конца XX века. Уже в 1992 г.
A. Zupan сообщал о временном увеличении у некоторых пациентов силовых показателей стимулируемых мышц, которые тем не менее с развитием заболевания продолжали снижаться, хотя и медленнее, чем у мышц контрольной конечности [14]. Появившиеся позднее данные о негативных эффектах электромиостимуляции, связанные с накоплением катионов Ca2+ и ускорением дегенеративных процессов [15], подвели черту под такими подходами в терапии МДД
Список литературы
-
Bladen C.L., Salgado D., Mongeset S. et al. The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015;36(4):395-402. DOI: 10.1002/humu.22758 EDN: UFQPHB
-
Blake D.J., Weir A., Newey S.E., Davies K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002;82(2):291-329. DOI: 10.1002/humu.22758
-
Van der Pijl E.M., van Putten M., Niks E.H. et al. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. Eur J Neurosci 2016;43(12):1623-35. DOI: 10.1111/ejn.13249
-
Tuffery-Giraud S., Béroud C., Leturcq F. et al. Genotype- phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: A model of nationwide knowledgebase. Hum Mutat 2009;30(6):934-45. DOI: 10.1002/humu.20976
-
Oshima J., Magner D.B., Lee J.A. et al. Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet 2009;126(3):411-23. DOI: 10.1007/s00439-009-0679-9 EDN: CIDSZD
-
Pegoraro E., Hoffman E.P., Pivaet L. et al. SPP1 genotype is a deter minant of disease severity in Duchenne muscular dystrophy. Neurology 2011;76(3):219-26. DOI: 10.1212/WNL.0b013e318207afeb
-
Nowak K.J., Davies K.E. Duchenne muscular dystrophy and dystro phin: pathogenesis and opportunities for treatment. EMBO Rep 2004;5(9):872-6. DOI: 10.1038/sj.embor.7400221
-
Crisafulli S., Sultana J., Fontana A. et al. Global epidemiology of Duchenne muscular dystrophy: An updated systematic review and meta-analysis. Orphanet J Rare Dis 2020;15(1):141. DOI: 10.1186/s13023-020-01430-8 EDN: JMSAJU
-
Mercuri E., Bönnemann C.G., Muntoni F. Muscular dystrophies. Lancet 2019;394(10213):2025-38. DOI: 10.1016/S0140-6736(19)32910-1
-
Landfeldt E., Thompson R., Sejersen T. et al. Life expectancy at birth in Duchenne muscular dystrophy: A systematic review and meta-analysis. Eur J Epidemiol 2020;35(7):643-53. DOI: 10.1007/s10654-020-00613-8 EDN: UPUROO
-
Nigro G., Comi L.I., Limongelli F.M. et al. Prospective study of X-linked progressive muscular dystrophy in campania. Muscle Nerve 1983;6(4):253-62. DOI: 10.1002/mus.880060403
-
Kilroy E.A., Ignacz A.C., Brann K.L. et al. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022;11:e62760. DOI: 10.7554/eLife.62760
-
Werneck L.C., Lorenzoni P.J., Dal-Prá Ducci R. et al. Duchenne muscular dystrophy: an historical treatment review. Arq Neuropsiquiatr 2019;77:579-89. DOI: 10.1590/0004-282X20190088 EDN: AJQJZG
-
Zupan A. Long-term electrical stimulation of muscles in children with duchenne and becker muscular dystrophy. Muscle Nerve 1992;15(3):362-7. DOI: 10.1002/mus.880150316
-
Yoshida M., Matsuzaki T., Date M. et al. Skeletal muscle fiber degeneration in mdx mice induced by electrical stimulation. Muscle Nerve 1997;20(11):1422-32. :113.0.co;2-3. DOI: 10.1002/(sici)1097-4598(199711)20
-
Kar N.C., Pearson C.M. Cholinesterase and esterase activity in normal and dystrophic human muscle. Biochem Med 1973;7(3):452-9. DOI: 10.1016/0006-2944(73)90066-5
-
Serafini L., Bonvini E. Therapeutic trials with galantamine in Duchenne-Griesinger-type progressive muscular dystrophy. Rass Clin Sci 1961;37:20-4.
-
Gamstorp I. Clinical evaluation of an oral anabolic steroid (methandrostenolone, dianabol CIBA) in children with muscular weakness and wasting. Acta Paediatr 1964;53(6):570-7. DOI: 10.1111/j.1651-2227.1964.tb07269.x
-
Dowben R.M., Perlstein M.A. Muscular dystrophy treated with norethandrolone. Arch Intern Med 1961;107:245-51. DOI: 10.1001/archinte.1961.03620020095009
-
Rudman D., Chyatte S.B., Pattersonet J.H. et al. Metabolic effects of human growth hormone and of estrogens in boys with Duchenne muscular dystrophy. J Clin Invest 1972;51(5):1118-24. DOI: 10.1172/JCI106904
-
Heckmatt J.Z., Heckmatt J.Z., Hyde S.A. et al. Therapeutic trial of isaxonine in duchenne muscular dystrophy. Muscle Nerve 1988;11(8):836-47. DOI: 10.1002/mus.880110807
-
Zavadenko N.N., Kamennykh L.N. Effect of sinestrol on the course of the myodystrophic process in progressive Duchenne muscular dystrophy. Zh Nevropatol Psikhiatr Im S S Korsakova 1989;89(8):41-5. EDN: OVQBQZ
-
Zatz M., Betti R.T.B., Levy J.A. Begnign duchenne muscular dystrophy in a patient with growth hormone deficiency. Am J Med Genet 1981;10(3):301-4. DOI: 10.1002/ajmg.1320240323
-
Fenichel G.M., Griggs R.C, Kissel J. et al. A randomized efficacy and safety trial of oxandrolone in the treatment of Duchenne dystrophy. Neurology 2001;56(8):1075-9. DOI: 10.1212/wnl.56.8.1075
-
Collipp P.J., Kelemen J., Chen S.Y. et al. Growth hormone inhibition causes increased selenium levels in Duchenne muscular dystrophy: A possible new approach to therapy. J Med Genet 1984; 21(4):254-6. DOI: 10.1136/jmg.21.4.254
-
Coakley J.H., Moorcraft J., Hipkin L.J. et al. The effect of mazindol on growth hormone secretion in boys with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 1988;51(12):1551-7. DOI: 10.1136/jnnp.51.12.1551
-
Tidball J.G., Wehling-Henricks M. Evolving therapeutic strategies for Duchenne muscular dystrophy: Targeting downstream events. Pediatr Res 2004;56(6):831-41. DOI: 10.1203/01.PDR.0000145578.01985.D0
-
Spencer M.J., Mellgren R.L. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 2002;11(21):2645-55. DOI: 10.1093/hmg/11.21.2645 EDN: IOZXXB
-
Kitaura T. How β2-adrenergic agonists induce skeletal muscle hypertrophy? J Phys Fit Sports Med 2013;2(4):423-8. DOI: 10.7600/jpfsm.2.423
-
Skura C.L., Fowler E.G., Wetzel G.T. et al. Albuterol increases lean body mass in ambulatory boys with Duchenne or Becker muscular dystrophy. Neurology 2008;70(2):137-43. DOI: 10.1212/01.WNL.0000287070.00149.a9
-
Fowler E.G., Graves M.C., Wetzel G.T., Spencer M.J. Pilot trial of albuterol in Duchenne and Becker muscular dystrophy. Neurology 2004;62(6):1006-8. DOI: 10.1212/01.wnl.0000118530.71646.0f
-
Lavi E., Cohen A., Dor T. et al. Growth hormone therapy for children with Duchenne muscular dystrophy and glucocorticoid induced short stature. J Endocr Soc 2021;5(Suppl 1):A715. DOI: 10.1210/jendso/bvab048.1455
-
Rutter M.M., Collins J., Rose S.R. et al. Growth hormone treatment in boys with Duchenne muscular dystrophy and glucocorticoid-induced growth failure. Neuromuscul Disord 2012;22(12): 1046-56. DOI: 10.1016/j.nmd.2012.07.009
-
Cittadini A., Comi L.I., Longobardi S. et al. A preliminary randomized study of growth hormone administration in Becker and Duchenne muscular dystrophies. Eur Heart J 2003;24(7):664-72. DOI: 10.1016/s0195-668x(02)00740-6 EDN: INSDEX
-
Frank G.R., Smith R.E. Effective growth hormone therapy in a growth hormone deficient patient with Duchenne muscular dystrophy without evidence of acceleration of the dystrophic process. J Pediatr Endocrinol Metab 2001;14(2):211-4. DOI: 10.1515/jpem.2001.14.2.211
-
Shavlakadze T., White J., Hoh J.F.Y. et al. Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice. Mol Ther Elsevier 2004;10(5):829-43. DOI: 10.1016/j.ymthe.2004.07.026
-
Rutter M.M., Wong B.L., Collins J.J. et al. Recombinant human insulin-like growth factor-1 therapy for 6 months improves growth but not motor function in boys with Duchenne muscular dystrophy. Muscle Nerve 2020;61(5):623-31. DOI: 10.1002/mus.26846
-
Schuelke M., Wagner K.R., Stolz L.E. et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004;350(26):2682-8. DOI: 10.1056/NEJMoa040933
-
Wagner K.R., McPherron A.C., Winik N. et al. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 2002;52(6):832-6. DOI: 10.1002/ana.10385
-
Bogdanovich S., Krag T.O.B., Barton E.R. et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002;420(6914):418-21. DOI: 10.1038/nature01154
-
Campbell C., McMillan H.J., Mah J.K. et al. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve 2017;55(4):458-64. DOI: 10.1002/mus.25268
-
Wagner K.R., Abdel-Hamid H.Z., Mah J.K. et al. Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscul Disord 2020;30(6):492-502. DOI: 10.1016/j.nmd.2020.05.002
-
Thomson W.H.S., Guest K.E. A trial of therapy by nucleosides and nucleotides in muscular dystrophy. J Neurol Neurosurg Psychiatry 1963;26(2):111-22. DOI: 10.1136/jnnp.26.2.111
-
Pearce J.M.S., Gubbay S.S., Hardy J. et al. Laevadosin in treatment of the duchenne type of muscular dystrophy: Preliminary results of a double-blind controlled trial. Br Med J 1964;2(5414):915-7. DOI: 10.1136/bmj.2.5414.915
-
Rybalka E., Timpani C.A., Stathi C.G. et al. Metabogenic and nutriceutical approaches to address energy dysregulation and skeletal muscle wasting in Duchenne muscular dystrophy. Nutrients 2015;7(12)9734-67. DOI: 10.3390/nu7125498
-
Thomson W.H.S., Smith I. X-linked recessive (Duchenne) muscular dystrophy (DMD) and purine metabolism: Effects of oral allopurinol and adenylate. Metabolism 1978;27(2):151-63. DOI: 10.1016/0026-0495(78)90161-0
-
Hellsten-Westing Y. Immunohistochemical localization of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry 1993;100(3):215-22. DOI: 10.1007/BF00269094 EDN: XXXZQN
-
Camiña F., Novo-Rodriguez M.I., Rodriguez-Segade S., Castro-Gago M. Purine and carnitine metabolism in muscle of patients with Duchenne muscular dystrophy. Clin Chim Acta 1995;243(2):151-64. DOI: 10.1016/0009-8981(95)06164-9
-
Thomson W.H., Smith I. Allopurinol in Duchenne's muscular dystrophy. N Engl J Med 1978;299(2):101.
-
Castro-Gago M., Lojo S., Novo I. et al. Effects of chronic allopurinol therapy on purine metabolism in Duchenne muscular dystrophy. Biochem Biophys Res Commun 1987;147(1):152-7. DOI: 10.1016/s0006-291x(87)80100-6
-
De Bruyn C.H., Kulakowski S., van Bennekom C.A. et al. Purine Metabolism in Duchenne Muscular Dystrophy. Purine Metabolism in Man-III: Clinical and Therapeutic Aspects. Boston: Springer US, 1980. Pp. 177-182. DOI: 10.1007/978-1-4615-9140-5_29
-
Kulakowski S., Renoirte P., de Bruyn C.H. Dynamometric and biochemical observations in Duchenne patients receiving allopurinol. Neuropediatrics 1981;12(1):92-4.
-
Tamari H., Ohtani Y., Higashi A. et al. Xanthine oxidase inhibitor in Duchenne muscular dystrophy. Brain Dev 1982;4(2):137-43. DOI: 10.1016/s0387-7604(82)80007-7
-
Mendell J.R., Wiechers D.O. Lack of benefit of allopurinol in Duchenne dystrophy. Muscle Nerve 1979;2(1):53-6. DOI: 10.1002/mus.880020108
-
Doriguzzi C., Bertolotto A., Ganzit G.P. et al. Ineffectiveness of allopurinol in Duchenne muscular dystrophy. Muscle Nerve 1981;4(2):176-8. DOI: 10.1002/mus.880040216
-
Hunter J.R., Galloway J.R., Brooke M.M. et al. Effects of allopurinol in Duchenne's muscular dystrophy. Arch Neurol 1983; 40(5):294-9. DOI: 10.1001/archneur.1983.04050050062009
-
Griffiths R.D., Cady E.B., Edwards R.H., Wilkie D.R. Muscle energy metabolism in Duchenne dystrophy studied by 31P-NMR: Controlled trials show no effect of allopurinol or ribose. Muscle Nerve 1985;8(9):760-7. DOI: 10.1002/mus.880080904
-
Bertorini T.E., Palmieri G.M., Griffin J. et al. Chronic allopurinol and adenine therapy in Duchenne muscular dystrophy: Effects on muscle function, nucleotide degradation, and muscle ATP and ADP content. Neurology 1985;35(1):61-5. DOI: 10.1212/wnl.35.1.61
-
Bakouche P., Chaouat D., Nick J. Allopurinol not effective in muscular dystrophy. N Engl J Med 1979;301(14):785. DOI: 10.1056/NEJM197910043011414
-
Stern L.M., Fewings J.D., Bretag A.H. et al. The progression of Duchenne muscular dystrophy: Clinical trial of allopurinol therapy. Neurology 1981;31(4):422-6. DOI: 10.1212/wnl.31.4.422
-
Petrillo S., Pelosi L., Piemonte F. et al. Oxidative stress in Duchenne muscular dystrophy: Focus on the NRF2 redox pathway. Hum Mol Genet 2017;26(14):2781-90. DOI: 10.1093/hmg/ddx173
-
Renjini R., Gayathri N., Nalini A. et al. Oxidative damage in muscular dystrophy correlates with the severity of the pathology: role of glutathione metabolism. Neurochem Res 2012;37(4):885-98. DOI: 10.1007/s11064-011-0683-z EDN: WQXMAB
-
Kelly-Worden M., Thomas E. Mitochondrial dysfunction in Duchenne muscular dystrophy. Open J Endocr Metab Dis 2014;4(8): 211-8. DOI: 10.4236/ojemd.2014.48020
-
Bodensteiner J.B., Engel A.G. Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: A study of 567,000 mus cle fibers in 114 biopsies. Neurology 1978;28(5):439. DOI: 10.1212/wnl.28.5.439
-
Brenman J.E., Chao D.S., Xia H. et al. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 1995;82(5):743-52. DOI: 10.1016/0092-8674(95)90471-9
-
Wink D.A., Cook J.A., Pacelli R. et al. Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol Lett 1995;82-83:221-6. DOI: 10.1016/0378-4274(95)03557-5 EDN: APPUHH
-
Uberti F., Lattuada D., Morsanuto V. et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 2014;99(4): 1367-74. DOI: 10.1210/jc.2013-2103
-
Sander M., Chavoshan B., Harris S.A. et al. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Nat Acad Sci USA 2000;97(25):13818-23. DOI: 10.1073/pnas.250379497
-
Гремякова Т.А., Суслов В.М., Сакбаева Г.Е., Степанов А.А. Витамин D в профилактике и терапии коморбидных состояний при мышечной дистрофии Дюшенна. Неврологический журнал им. Л.О. Бадаляна 2021;2(1):38-50. DOI: 10.46563/2686-8997-2021-2-1-38-50 EDN: VAAUZT
-
Bhattacharyya S., Bhattacharyya K., Maitra A. Possible mechanisms of interaction between statins and vitamin D. QJM Mon J Assoc Phys 2012;105(5):487-91. DOI: 10.1093/qjmed/hcs001
-
Плещева А.В., Пигарова Е.А., Дзеранова Л.К. Витамин D и метаболизм: факты, мифы и предубеждения. Ожирение и метаболизм 2012;(2):33-42. DOI: 10.14341/omet2012233-42 EDN: PEHMVP
-
Bianchi M.L., Morandi L., Andreucci E. et al. Low bone density and bone metabolism alterations in Duchenne muscular dystrophy: response to calcium and vitamin D treatment. Osteoporos Int 2011;22(2):529-39. DOI: 10.1007/s00198-010-1275-5 EDN: ARXWDC
-
Debruin D.A., Andreacchio N., Hanson E.D. et al. The effect of vitamin D supplementation on skeletal muscle in the mdx mouse model of Duchenne muscular dystrophy. Sports 2019;7(5):96. DOI: 10.3390/sports7050096
-
Bian Q., McAdam L., Grynpas M. et al. Increased rates of vitamin D insufficiency in boys with Duchenne muscular dystrophy despite higher vitamin D3 supplementation. Glob Pediatr Health 2019; 6:2333794X19835661. DOI: 10.1177/2333794X19835661
-
Bessman S.P., Geiger P.J. Transport of energy in muscle: the phosphorylcreatine shuttle. Science 1981;211(4481):448-52. DOI: 10.1126/science.6450446 EDN: XTSFBI
-
Bessman S.P., Carpenter C.L. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 1985;54:831-62. DOI: 10.1146/annurev.bi.54.070185.004151
-
Krzanowski J., Matschinsky F.M. Regulation of phosphofructokinase by phosphocreatine and phosphorylated glycolytic intermediates. Biochem Biophys Res Commun 1969;34(6):816-23. DOI: 10.1016/0006-291x(69)90253-8
-
Willoughby D.S., Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc 2001;33(10):1674-81. DOI: 10.1097/00005768-200110000-00010
-
Louis M., Lebacq J., Poortmans J.R. et al. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve 2003;27(5):604-10. DOI: 10.1002/mus.10355
-
Walter M.C., Lochmüller H., Reilich P. et al. Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology 2000;54(9):1848-50. DOI: 10.1212/wnl.54.9.1848
-
Tarnopolsky M.A., Mahoney D.J., Vajsar J. et al. Creatine monohyd rate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 2004;62(10):1771-7. DOI: 10.1212/01.wnl.0000125178.18862.9d
-
Banerjee B., Sharma U., Balasubramanian K. et al. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: A randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 2010;28(5):698-707. DOI: 10.1016/j.mri.2010.03.008
-
Hankard R.G., Hammond D., Haymond M.W., Darmaun D. Oral glutamine slows down whole body protein breakdown in Duchenne muscular dystrophy. Pediatr Res 1998;43(2):222-6. DOI: 10.1203/00006450-199802000-00011
-
Mok E., Eléouet-Da Violante C., Daubrosse C. et al. Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy. Am J Clin Nutr 2006;83(4):823-8. DOI: 10.1093/ajcn/83.4.823
-
Escolar D.M., Buyse G., Henricson E. et al. CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann Neurol 2005;58(1):151-5. DOI: 10.1002/ana.20523
-
Ключников С.О., Гнетнева Е.С. Убихинон (коэнзим Q10): теория и клиническая практика. Педиатрия 2008;87(3):103-10. EDN: JQPSLZ
-
Folkers K., Simonsen R. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim Biophys Acta 1995;1271(1):281-6. DOI: 10.1016/0925-4439(95)00040-b
-
Spurney C.F., Rocha C.T., Henricson E. et al. CINRG pilot trial of coenzyme Q10 in steroid treated Duchenne muscular dystrophy. Muscle Nerve 2011;44(2):174-8. DOI: 10.1002/mus.22047
-
Wang R.T., Silverstein Fadlon C.A., Ulm J.W. et al. Online self-report data for Duchenne muscular dystrophy confirms natural history and can be used to assess for therapeutic benefits. PLoS Curr 2014. DOI: 10.1371/currents.md.e1e8f2be7c949f9ffe81ec6fca1cce6a
-
Hodgens A., Sharman T. Corticosteroids. StatPearls. Treasure Island: StatPearls Publishing, 2023.
-
Ericson-Neilsen W., Kaye A.D. Steroids: Pharmacology, complications, and practice delivery issues. Ochsner J 2014;14(2):203-7.
-
Siegel I.M., Miller J.E., Ray R.D. Failure of corticosteroid in the treatment of Duchenne (pseudo-hypertrophic) muscular dystrophy. Report of a clinically matched three year double-blind study. IMJ Ill Med J 1974;145(1):32, 33.
-
Angelini C., Peterle E. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol 2012;31(1):9-15.
-
Mendell J.R., Moxley R.T., Griggs R.C. et al. Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy. N Engl J Med 1989;320(24):1592-7. DOI: 10.1056/NEJM198906153202405
-
Brooke M.H., Fenichel G.M., Griggs R.C. et al. Clinical investigation of Duchenne muscular dystrophy. Interesting results in a trial of prednisone. Arch Neurol 1987;44(8):812-7. DOI: 10.1001/archneur.1987.00520200016010
-
Fenichel G.M., Florence J.M., Pestronk A. et al. Long-term benefit from prednisone therapy in Duchenne muscular dystrophy. Neurology 1991;41(12):1874-7. DOI: 10.1212/wnl.41.12.1874
-
Griggs R.C., Moxley R.T.3rd, Mendell J.R. et al. Duchenne dystrophy: Randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology 1993;43(3 Pt 1):520. DOI: 10.1212/wnl.43.3_part_1.520
-
Griggs R.C., Moxley R.T., Mendell J.R. et al. Prednisone in Duchenne dystrophy: A Randomized, controlled trial defining the time course and dose response. Arch Neurol 1991;48(4):383-8. DOI: 10.1001/archneur.1991.00530160047012
-
Angelini C., Pegoraro E., Turella E. et al. Deflazacort in Duchenne dystrophy: Study of long-term effect. Muscle Nerve 1994;17(4):386-91. DOI: 10.1002/mus.880170405
-
Shieh P.B., Mcintosh J., Jin F. et al. Deflazacort versus prednisone/prednisolone for maintaining motor function and delaying loss of ambulation: A post HOC analysis from the ACT DMD trial. Muscle Nerve 2018;58(5):639-45. DOI: 10.1002/mus.26191
-
Biggar W.D., Skalsky A., McDonald C.M. Comparing deflazacort and prednisone in Duchenne muscular dystrophy. J Neuromuscul Dis 2022;9(4):463-76. DOI: 10.3233/JND-210776 EDN: ZZGHHE
-
Parente L. Deflazacort: Therapeutic index, relative potency and equivalent doses versus other corticosteroids. BMC Pharmacol Toxicol 2017;18(1):1. DOI: 10.1186/s40360-016-0111-8 EDN: WPFCST
-
Bonifati M.D., Ruzza G., Bonometto P. et al. A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve 2000;23(9):1344-7. :93.0.co;2-f. DOI: 10.1002/1097-4598(200009)23
-
Angelini C. The role of corticosteroids in muscular dystrophy: A critical appraisal. Muscle Nerve 2007;36(4):424-35. DOI: 10.1002/mus.20812
-
Silversides C.K., Webb G.D., Harris V.A., Biggar D.W. Effects of deflazacort on left ventricular function in patients with Duchenne muscular dystrophy. Am J Cardiol 2003;91(6):769-72. DOI: 10.1016/s0002-9149(02)03429-x EDN: GKGOBR
-
Koeks Z., Bladen C.L., Salgado D. et al. Clinical outcomes in Duchenne muscular dystrophy: A study of 5345 patients from the TREAT-NMD DMD Global Database. J Neuromuscul Dis 2017;4(4):293-306. DOI: 10.3233/JND-170280 EDN: XNTDVK
-
Kissel J.T., Lynn D.J., Rammohan K.W. et al. Mononuclear cell analysis of muscle biopsies in prednisone- and azathioprine-treated Duchenne muscular dystrophy. Neurology 1993;43(3 Pt 1):532. DOI: 10.1212/wnl.43.3_part_1.532
-
Kirschner J., Schessl J., Schara U. et al. Treatment of Duchenne muscular dystrophy with ciclosporin A: A randomised, double-blind, placebo-controlled multicentre trial. Lancet Neurol 2010;9(11):1053-9. DOI: 10.1016/S1474-4422(10)70196-4
-
Hoffman E.P., Riddle V., Siegler M.A. et al. Phase 1 trial of vamorolone, a first-in-class steroid, shows improvements in side effects via biomarkers bridged to clinical outcomes. Steroids 2018;134:43-52. DOI: 10.1016/j.steroids.2018.02.010
-
Hoffman E.P., Schwartz B.D., Mengle-Gaw L.J. et al. Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function. Neurology 2019;93(13):e1312-e1323. DOI: 10.1212/WNL.0000000000008168
-
Klingler W., Jurkat-Rott K., Lehmann-Horn F., Schleip R. The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 2012;31(3):184-95.
-
Papich M.G. Penicillamine. Saunders Handbook of Veterinary Drugs. Elsevier, 2016. Pp. 612-613.
-
Roelofs R.I., de Arango G.S., Law P.K. et al. Treatment of Duchenne’s muscular dystrophy with penicillamine: Results of a double-blind trial. Arch Neurol 1979;36(5):266-8. DOI: 10.1001/archneur.1979.00500410044005
-
Bradley W.G., Enomoto A., Gardner-Medwin D. A double-blind controlled trial of penicillamine therapy in Duchenne muscular dystrophy - interim comments. Proc R Soc Med 1977; 70(Suppl 3):94.
-
Fenichel G.M., Brooke M.H., Griggs R.C. et al. Clinical investigation in Duchenne muscular dystrophy: Penicillamine and vitamin E. Muscle Nerve 1988;11(11):1164-8. DOI: 10.1002/mus.880111110
-
Romanelli R.G., Caligiuri A., Carloni V. et al. Effect of pentoxifylline on the degradation of procollagen type I produced by human hepatic stellate cells in response to transforming growth factor-beta 1. Br J Pharmacol 1997;122(6):1047-54. DOI: 10.1038/sj.bjp.0701484
-
Escolar D.M., Zimmerman A., Bertorini T. et al. Pentoxifylline as a rescue treatment for DMD. Neurology 2012;78(12):904-13. DOI: 10.1212/WNL.0b013e31824c46be
-
Lin P.-S., Chang H.-H., Yeh C.-Y. et al. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/ Smad signaling. J Formos Med Assoc 2017;116(5):351-8. DOI: 10.1016/j.jfma.2016.07.014
-
Zimmerman A., Clemens P.R., Tesi-Rocha C. et al. Liquid formulation of pentoxifylline is a poorly tolerated treatment for Duchenne dystrophy. Muscle Nerve 2011;44(2):170-3. DOI: 10.1002/mus.22127
-
Morales M.G., Gutierrez J., Cabello-Verrugio C. et al. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 2013;22(24):4938-51. DOI: 10.1093/hmg/ddt352
-
Connolly A.M., Zaidman C.M., Brandsema J.F. et al. Pamrevlumab, a fully human monoclonal antibody targeting connective tissue growth factor, for non-ambulatory patients with Duchenne muscular dystrophy. J Neuromuscul Dis 2023;10(4):685-99. DOI: 10.3233/JND-230019 EDN: QWRNLC
-
García A.M., Goldemberg A.L., Fernández H. et al. Effect of chronic administration of verapamil in Duchenne muscular dystrophy. Gen Pharmacol 1990;21(6):939-42. DOI: 10.1016/0306-3623(90)90459-y
-
Emery A.E., Skinner R., Howden L.C., Matthews M.B. et al. Verapamil in Duchenne muscular dystrophy. Lancet Lond Engl 1982;1(8271):559. DOI: 10.1016/s0140-6736(82)92063-3
-
Phillips M.F., Quinlivan R. Calcium antagonists for Duchenne muscular dystrophy. Cochrane Database Syst Rev 2008;4:CD004571. DOI: 10.1002/14651858.CD004571.pub2
-
Dick D.J., Gardner-Medwin D., Gates P.G. et al. A trial of flunarizine in the treatment of Duchenne muscular dystrophy. Muscle Nerve 1986;9(4):349-54. DOI: 10.1002/mus.880090412
-
Moxley R.T.3rd, Brooke M.H., Fenichel G.M. et al. Clinical investigation in Duchenne dystrophy. VI. Double-blind controlled trial of nifedipine. Muscle Nerve 1987;10(1):22-33. DOI: 10.1002/mus.880100106
-
Pernice W., Beckmann R., Ketelsen U.P. et al. A double-blind placebo controlled trial of diltiazem in Duchenne dystrophy. Klin Wochenschr 1988;66(13):565-70. DOI: 10.1007/BF01720830
-
Bertorini T.E., Palmieri G.M., Griffin J.W. et al. Effect of chronic treatment with the calcium antagonist diltiazem in Duchenne muscular dystrophy. Neurology 1988;38(4):609-13. DOI: 10.1212/wnl.38.4.609
-
Patten B.M., Zeller R.S. Clinical trials of vasoactive and antiserotonin drugs in Duchenne muscular dystrophy. Ann Clin Res 1983;15(4):164-6.
-
Victor R.G., Sweeney H.L., Finkel R. et al. A phase 3 randomized placebo-controlled trial of tadalafil for Duchenne muscular dystrophy. Neurology 2017;89(17):1811-20. DOI: 10.1212/WNL.0000000000004570
Выпуск
Другие статьи выпуска
Спинальная мышечная атрофия (СМА) – наследственное аутосомно-рецессивное заболевание, дебютирующее в различные возрастные периоды. Неврологическая симптоматика носит прогрессирующий характер и приводитк значительному ограничению жизнедеятельности и снижению продолжительности жизни.
В настоящее время существует несколько препаратов для патогенетического лечения СМА. В статье отражена эволюция мнения клиницистов по лечению пациентов со СМА по мере накопления научных данных клинических исследований и опыта по ведению пациентов в реальной клинической практике. Наибольшие дебаты ведутся по вопросу лечения пациентов с 4 копиями гена SMN2. Проведен анализ базы данных пациентского регистра «Семьи СМА», представлены данные по 2 пациентам с 4 копиями гена SMN2 с ранним началом болезни
Магнитно-резонансная томография (МРТ) все более активно используется для визуализации периферических нервов. Это связано с ростом и совершенствованием технических возможностей и, как следствие, с началом применения в научных исследованиях ряда методик МРТ, позволяющих проводить количественную оценку периферических нервов. К ним относится в первую очередь диффузионно-тензорная МРТ, посредством оценки диффузии воды в тканях позволяющая исследовать структуру периферических нервов. Кроме того, Т2-релаксометрия и исследование с использованием переноса намагниченности позволяют оценить сохранность макромолекулярной структуры нервных элементов. Интересным представляется также исследование фракции жира как в нервной, так и в мышечной ткани. Краткое описание упомянутых методик, а также некоторые результаты и перспективы их использования для исследования периферических нервов представлены в настоящей статье, дополненной иллюстрациями собственных наблюдений и опыта применения описанных методик МРТ.
Термин «острый вялый миелит» используется для описания состояния, характеризующегося остро возникшим вялым
параличом конечности, а также поражением двигательных нейронов спинного мозга. Отсутствие специфического
лечения, тяжелый неврологический дефицит, сохраняющийся у 75–95 % пациентов в отдаленные сроки после
перенесенного заболевания, свидетельствуют о его тяжести.
Цель работы – представить современные данные об остром вялом миелите у детей, методах его лечения, а также
оценить эффективность транспозиции нервов для восстановления функции верхней конечности.
Поиск публикаций осуществлялся в базах данных PubMed/MEDLINE, Google Scholar за период 2003–2022 гг., также
использовались данные Центра по контролю и профилактике болезней США (https://www.cdc.gov). Был проанализиро‑
ван опыт хирургического лечения 57 детей с парезами верхних конечностей вследствие острого вялого миелита, которым
была выполнена транспозиция 105 нервов. Восстановление функции плечевого сустава (невротизация n. axillaris,
n. suprascapularis) проводилось у 57 (54,3 %) пациентов, восстановление сгибания предплечья (невротизация
n. musculocutaneus) – у 37 (35,2 %), восстановление разгибания предплечья – у 9 (8,5 %) (невротизация ветви n. radialis
к m. triceps brachii), улучшение функции сгибателей пальцев кисти – у 1 (1 %) (невротизация ветви n. interosseus anterior),
восстановление разгибания пальцев кисти – у 1 (1 %) (невротизация n. interosseus posterior).
Представленный обзор литературы показал эффективность транспозиции нервов у детей с парезами верх‑
них конечностей вследствие острого вялого миелита в сроки до 1 года от начала болезни. При планирова‑
нии этапности операций приоритеты следует отдавать восстановлению функции плечевого сустава в связи
с высокой вероятностью спонтанного восстановления сгибания в локтевом суставе у детей.
Представлено описание клинико-генетических характеристик 4 российских пациентов с синдромом Шаафа–Янга, обусловленным ранее описанными и вновь выявленными нуклеотидными вариантами в гене MAGEL2. Показано, что наиболее тяжелые клинические проявления обнаружены у пациента с вновь выявленным вариантом с.1828С>T(p.Gln610Ter), в то время как у пациента с новым нуклеотидным вариантом с.1609С>T (p.Gln537Ter) проявления болезни выражены умеренно. С учетом значительного сходства клинических проявлений синдрома Шаафа–Янга с таковыми синдрома Прадера–Вилли изложены критерии их дифференциальной диагностики, использование которых поможет оптимизировать процесс молекулярно-генетического анализа, направленного на поиск этиоло‑гического фактора.
Избыточное испарение слезной пленки может приводить к повреждению нервных волокон роговицы и обусловливать возникновение хронической невропатической боли, имитирующей сухость. Лазерная конфокальная микроскопия роговицы позволяет зафиксировать морфологические изменения нервных волокон роговицы и может
быть использована в качестве диагностического инструмента для поиска субстрата невропатической боли.
Цель исследования – изучение и сравнительная оценка структурных изменений нервных волокон роговицы у пациентов с синдромом жжения глаз и синдромом сухого глаза методом лазерной конфокальной микроскопии.
Развитие нейропатической боли при химиоиндуцированной полинейропатии является одним из осложнений химиотерапии (ХТ). Особенно часто она развивается на фоне применения препаратов платины и таксанов.
Поражение тонких волокон является важной составляющей болевой формы полинейропатии. Поскольку электронейромиографическое исследование не подтверждает поражение тонких нервных волокон, этот диагноз часто бывает трудно подтвердить в клинической практике, основываясь в основном на субъективной оценке жалоб,
чувствительности и использовании опросников. Биопсия кожи является проверенным методом определения плотности интраэпидермальных нервных волокон и может рассматриваться для диагностики дистальной сенсорной нейропатии, особенно нейропатии тонких волокон. Учитывая сложности оценки повреждения тонких волокон,
распространенность и патофизиология нейропатии тонких волокон у онкологических пациентов остаются плохо изученными.
Цель исследования – оценить изменения количества тонких волокон у пациентов с химиоиндуцированной полинейропатией на примере пациентов с онкологическими заболеваниями органов желудочно-кишечного тракта (ЖКТ) и малого таза (МТ), проанализировать взаимосвязь плотности волокон с клинико-нейрофизиологическими показателями и нейропатическим болевым синдромом.
Одним из принципиальных различий между мультифокальной моторной нейропатией (ММН) и мультифокальным вариантом хронической воспалительной демиелинизирующей полирадикулонейропатии (мХВДП) является наличие или отсутствие чувствительных нарушений. Тем не менее данные литературы свидетельствуют о том, что при ММН также возможно поражение сенсорных волокон периферических нервов. В связи с этим проблема
дифференциальной диагностики ММН и мХВДП по-прежнему актуальна.
Цель исследования – оценить спектр и тяжесть объективных сенсорных и автономных нарушений при ММН и мХВДП, определить дифференциально-диагностические маркеры.
Издательство
- Издательство
- АБВ-Пресс
- Регион
- Россия, Москва
- Почтовый адрес
- 115522, г. Москва, а/я 136
- Юр. адрес
- 115201, г Москва, р-н Нагатино-Садовники, Старокаширское шоссе, д 2 к 2, помещ I ком 6А, 6А
- ФИО
- Наумов Леонид Маркович (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- info@abvpress.ru
- Контактный телефон
- +7 (499) 9299619
- Сайт
- https://abvpress.ru/