Болезнь Тея-Сакса (OMIM 272800) — наследственное аутосомно-рецессивное заболевание, обусловленное дефицитом фермента β-гексозаминидазы А (HexA), в результате чего происходит накопление GM2-ганглиозидов в нервной и других тканях организма. Дефицит фермента возникает вследствие различных мутаций гена HEXA. Тяжесть клинических признаков при болезни Тея-Сакса определяется остаточной активностью HexA, зависящей от типа (вида) мутации. В настоящее время не существует эффективного лечения болезни Тея-Сакса. Описаны клинические случаи применения субстрат-редуцирующей терапии, трансплантации костного мозга или пуповинной крови, однако терапевтическая эффективность данных методов остается недостаточной для предотвращения усугубления неврологических нарушений у пациентов с болезнью Тея-Сакса. Обнадеживающие результаты получены с использованием ме- тодов генной терапии для доставки генов дикого типа, кодирующих α и β субъединицы фермента HexA. В настоящем обзоре обсуждаются терапевтические стратегии лечения болезни Тея- Сакса, а также методы диагностики и моделирование этой патологии на животных для оценки эффективности новых методов терапии болезни Тея-Сакса.
Идентификаторы и классификаторы
GM2-ганглиозидоз представляет собой группу аутосомно-рецессивных заболеваний нарушения обмена веществ, относящуюся к лизосомным болезням накопления. Данные заболевания обусловлены дефицитом гидролитического фермента β-гексозаминидазы (hexosaminidase, Hex), отвечающего за деградацию GM2-ганглиозидов, которые для фермента Hex являются субстратом.
Список литературы
- Семенова О.В., Клюшников С.А., Павлов Э.В. и др. Клинический случай болезни Тея-Сакса с поздним началом. Нервные болезни 2016; 3: 57–60. [Semenova O.V., Klyushnikov S.A., Pavlov E.V. et al. Clinical case of late onset Tay-Sachs disease. Nervous diseases 2016; 3: 57–60].
- Sandhoff K., Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J. Neurosci. 2013; 33(25): 10195–208.
- Мавлиханова А.А., Павлов В.Н., Ян Б. и др. Ганглиозиды и их значение в развитии и функционировании нервной системы. Медицинский вестник Башкортостана 2017; 12(4): 121–6. [Mavlikhanova A.A., Pavlov V.N., Yang B. el al. Gangliosides and their significance in the development and functioning of the nervous system. Medical Bulletin of Bashkortostan 2017;
12(4): 121–6]. - Ferreira C.R., Gahl W.A. Lysosomal storage diseases. Translational science of rare diseases 2017; 2(1–2): 1–71.
- Solovyeva V.V., Shaimardanova A.A., Chulpanova D.S. et al. New Approaches to Tay-Sachs Disease Therapy. Front. Physiol. 2018; 9: 1663.
- Weitz G., Proia R.L. Analysis of the glycosylation and phosphorylation of the alpha-subunit of the lysosomal enzyme, beta-hexosaminidase A, by site-directed mutagenesis. J. Biol. Chem. 1992; 267(14): 10039–44.
- Руденская Г.Е., Букина А.М., Букина Т.М. и др. Ганглиозидоз GM2 у взрослых: первое российское наблюдение и обзор литературы. Медицинская генетика 2015; 14(12): 39–46. [Rudenskaya G.E., BukinaA.M., Bukina T.M. et al. GM2 gangliosidosis in adults: first Russian case report and literature review. Medical genetics 2015; 14(12): 39–46].
- Mahuran D.J. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim. Biophys. Acta 1999; 1455(2–3): 105–38.
- Myerowitz R. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum. Mutat. 1997; 9(3): 195–208.
- Wada R., Tifft C.J., Proia R.L. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. PNAS USA 2000; 97(20): 10954–9.
- Myerowitz R., Lawson D., Mizukami H. et al. Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum. Mol. Genet. 2002; 11(11): 1343–50.
- Wu Y.P., Proia R.L. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. PNAS USA 2004; 101(22): 8425–30.
- Lew R.M., Burnett L., Proos A.L. et al. Tay-Sachs disease: current perspectives from Australia. Appl. Clin. Genet. 2015; 8: 19–25.
- Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. Hexosaminidase A deficiency. Seattle (WA): University of Washington; 1999, www.ncbi.nlm.nih.gov/books/NBK1218//NBK1218/.
- Osher E., Fattal-Valevski A., Sagie L. et al. Effect of cyclic, low dose pyrimethamine treatment in patients with late onset Tay Sachs: an open label, extended pilot study. Orphanet J. Rare Dis. 2015; 10: 45.
- Patterson M.C. Gangliosidoses. Handb. Clin. Neurol. 2013; 113: 1707–8.
- Cheema H.A., Waheed N., Saeed A. Unusual case of Juvenile Tay- Sachs disease. BMJ Case Rep. 2019; 12(9): 230140.
- Nestrasil I., Ahmed A., Utz J.M. et al. Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: Volumetric quantitative MRI study. Mol. Genet. Metab. 2018; 123(2): 97–104.
- Jarnes Utz J.R., Kim S., King K. et al. Infantile gangliosidoses: Mapping a timeline of clinical changes. Mol. Genet. Metab. 2017; 121(2): 170–9.
- Bley A.E., Giannikopoulos O.A., Hayden D. et al. Natural history of infantile G(M2) gangliosidosis. Pediatrics 2011; 128(5): e1233–41.
- Regier D.S., Proia R.L., D’Azzo A. et al. The GM1 and GM2 gangliosidoses: natural history and progress toward therapy. Pediatric Endocrinology Reviews 2016; 13 Suppl 1: 663–73.
- Maegawa G.H., Stockley T., Tropak M. et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 2006; 118(5): e1550–62.
- Sandhoff K., Christomanou H. Biochemistry and genetics of gangliosidoses. Hum. Genet. 1979; 50(2): 107–43.
- Deik A., Saunders-Pullman R. Atypical presentation of late-onset Tay-Sachs disease. Muscle & Nerve 2014; 49(5): 768–71.
- Cachon-Gonzalez M.B., Wang S.Z., McNair R. et al. Gene transfer corrects acute GM2 gangliosidosis — potential therapeutic contribution of perivascular enzyme flow. Mol. Ther. 2012; 20(8): 1489–500.
- Zhang J., Chen H., Kornreich R. et al. Prenatal diagnosis of Tay- Sachs disease. Methods Mol. Biol. 2019; 1885: 233–50.
- Taniike M., Yamanaka S., Proia R.L. et al. Neuropathology of mice
with targeted disruption of Hexa gene, a model of Tay-Sachs disease. Acta
Neuropathol. 1995; 89(4): 296–304. - Yuziuk J.A., Bertoni C., Beccari T. et al. Specificity of mouse GM2 activator protein and beta-N-acetylhexosaminidases A and B. Similarities and differences with their human counterparts in the catabolism of GM2. J. Biol. Chem. 1998; 273(1): 66–72.
- Seyrantepe V., Demir S.A., Timur Z.K. et al. Murine sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease. Exp. Neurol. 2018; 299(Pt A): 26–41.
- Sango K., Yamanaka S., Hoffmann A. et al. Mouse models of Tay- Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat. Genet. 1995; 11(2): 170–6.
- Phaneuf D., Wakamatsu N., Huang J.Q. et al. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum. Mol. Genet. 1996; 5(1): 1–14.
- Torres P.A., Zeng B.J., Porter B.F. et al. Tay-Sachs disease in Jacob
sheep. Mol. Genet. Metab. 2010; 101(4): 357–63. - Porter B.F., Lewis B.C., Edwards J.F. et al. Pathology of GM2 gangliosidosis in Jacob sheep. Vet. Pathol. 2011; 48(4): 807–13.
- Hayase T., Shimizu J., Goto T. et al. Unilaterally and rapidly progressing white matter lesion and elevated cytokines in a patient with Tay-Sachs disease. Brain Dev. 2010; 32(3): 244–7.
- Bembi B., Marchetti F., Guerci V.I. et al. Substrate reduction therapy in the infantile form of Tay-Sachs disease. Neurology 2006; 66(2): 278–80.
- Jacobs J.F., Willemsen M.A., Groot-Loonen J.J. et al. Allogeneic BMT followed by substrate reduction therapy in a child with subacute Tay- Sachs disease. Bone Marrow Transplant. 2005; 36(10): 925–6.
- Stepien K.M., Lum S.H., Wraith J.E. et al. Haematopoietic stem cell transplantation arrests the progression of neurodegenerative disease in late-onset Tay-Sachs disease. JIMD reports 2018; 41: 17–23.
- Platt F.M., Jeyakumar M., Andersson U. et al. Substrate reduction therapy in mouse models of the glycosphingolipidoses. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2003; 358(1433): 947–54.
- Maegawa G.H., Banwell B.L., Blaser S. et al. Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol. Genet. Metab. 2009; 98(1–2): 215–24.
- Boomkamp S.D., Rountree J.S., Neville D.C. et al. Lysosomal storage of oligosaccharide and glycosphingolipid in imino sugar treated cells. Glycoconj. J. 2010; 27(3): 297–308.
- Barton N.W., Brady R.O., Dambrosia J.M. et al. Replacement therapy for inherited enzyme deficiency-macrophage-targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med. 1991; 324(21): 1464–70.
- Connock M., Burls A., Frew E. et al. The clinical effectiveness and costeffectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review. Health Technology Assessment 2006; 10(24): iii-iv, ix-136.
- Eng C.M., Guffon N., Wilcox W.R. et al. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N. Engl. J. Med. 2001; 345(1): 9–16.
- Klinge L., Straub V., Neudorf U. et al. Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study. Neuropediatrics 2005; 36(1): 6–11.
- Wraith J.E., Clarke L.A., Beck M. et al. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebocontrolled,multinational study of recombinant human alpha-L-iduronidase (laronidase). J. Pediatr. 2004; 144(5): 581–8.
- Muenzer J., Lamsa J.C., Garcia A. et al. Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr. 2002; 91(439): 98–9.
- Harmatz P., Whitley C.B., Waber L. et al. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J. Pediatr. 2004; 144(5): 574–80.
- Jakobkiewicz-Banecka J., Wegrzyn A., Wegrzyn G. Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases. J. Appl. Genet. 2007; 48(4): 383–8.
- Sorrentino N.C., D’Orsi L., Sambri I. et al. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol. Med. 2013; 5(5): 675–90.
- Tropak M.B., Yonekawa S., Karumuthil-Melethil S. et al. Construction of a hybrid beta-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. Mol. Ther. Methods Clin. Dev. 2016; 3: 15057.
- Martin P.L., Carter S.L., Kernan N.A. et al. Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol. Blood Marrow Transplant. 2006; 12(2): 184–94.
- Galieva L.R., Mukhamedshina Y.O., Arkhipova S.S. et al. Human umbilical cord blood cell transplantation in neuroregenerative strategies. Front. Pharmacol. 2017; 8: 628.
- Guidotti J.E., Mignon A., Haase G. et al. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice. Hum. Mol. Genet. 1999; 8(5): 831–8.
- Nakamura T., Sato K., Hamada H. Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J. Virol. 2003; 77(4): 2512–21.
- Wolfe D., Goins W.F., Yamada M. et al. Engineering herpes simplex virus vectors for CNS applications. Exp. Neurol. 1999; 159(1): 34–46.
- Martino S., Marconi P., Tancini B. et al. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum. Mol. Genet. 2005; 14(15): 2113–23.
- Cachon-Gonzalez M.B., Wang S.Z., Lynch A. et al. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. PNAS USA 2006; 103(27): 10373–8.
- Karumuthil-Melethil S., Nagabhushan Kalburgi S., Thompson P. et al. Novel vector design and hexosaminidase variant enabling self-complementary adeno-associated virus for the treatment of Tay-Sachs disease. Hum. Gene Ther. 2016; 27(7): 509–21.
- Osmon K.J., Woodley E., Thompson P. et al. Systemic gene transfer of a hexosaminidase variant using an scAAV9.47 vector corrects GM2 gangliosidosis in Sandhoff mice. Hum. Gene Ther. 2016; 27(7): 497–508.
- Gray-Edwards H.L., Randle A.N., Maitland S.A. et al. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease. Hum. Gene Ther. 2018; 29(3): 312–26.
- Bradbury A.M., Cochran J.N., McCurdy V.J. et al. Therapeutic response in feline Sandhoff disease despite immunity to intracranial gene therapy. Mol. Ther. 2013; 21(7): 1306–15.
- Golebiowski D., van der Bom I.M.J., Kwon C.S. et al. Direct intracranial injection of AAVrh8 encoding monkey beta-N-acetylhexosaminidase causes neurotoxicity in the primate brain. Hum. Gene Ther. 2017; 28(6): 510–22.
Выпуск
Другие статьи выпуска
Митомицин С — алкилирующий агент, относящийся к группе одноцентровых мутагенов и наиболее часто использующийся в экспериментах in vitro по моделированию мутагенеза. Целью работы было изучение цитотоксических и генотоксических эффектов митомицина С на эндотелиоциты артерий, в различной степени подверженных развитию атеросклероза, in vitro. С помощью колориметрического МТТ-теста была изучена цитотоксичность различных концентраций митомицина С, а с использованием микроядерного теста проведена оценка генотоксических эффектов данного мутагена на культурах эндотелиальных клеток коронарной и внутренней грудной артерий человека, культивируемых в условиях индуцированного мутагенеза. После 6 ч. культивирования ни одна из концентраций митомицина С не вызывала значимого снижения количества жизнеспособных клеток по сравнению с контролем, а увеличение времени мутагенной нагрузки до 24 ч. приводило к достоверному (p<0,05) уменьшению количества жизнеспособных эндотелиоцитов и внутренней грудной артерий при концентрациях митомицина С выше 350 нг/мл и 200 нг/мл, соответственно. Кроме того, в культурах, обработанных митомицином С, было отмечено почти трехкратное превышение частоты цитогенетических повреждений по нескольким маркерам (количеству клеток с микроядрами, нуклеоплазменными мостами и ядерными протрузиями) по сравнению с контролем (p<0,01), причем уровень повреждений ДНК в клетках внутренней грудной артерии был более высоким по сравнению с таковым в клетках коронарной артерии. Таким образом, было установлено, что эндотелиальные клетки различных сосудов отличаются порогом чувствительности к цитотоксическому действию алкилирующего агента и характеризуются различным уровнем генотоксического стресса в ответ на действие мутагена.
Мышечная дистрофия Дюшенна — Х-сцепленная рецессивная мышечная дистрофия, связанная с мутациями в гене белка дистрофина. Наиболее распространенной лабораторной моделью мышечной дистрофии Дюшенна являются мыши mdx. Для поперечнополосатых мышечных волокон мышей mdx характерно отсутствие дистрофина, наличие центрально расположенных ядер в волокнах, а также высокий уровень обновления поперечнополосатых мышечных волокон. Кроме того, у мышей mdx на- блюдается нарушение структуры нейромышечных соединений, выражающееся в распаде больших кластеров ацетилхолиновых рецепторов, имеющих форму ветвей, на мелкие кластеры, имеющие форму островков. Цель работы — оценить влияние немиелоаблативной трансплантации клеток костного мозга мышей «дикого» типа C57BL/6 на синтез дистрофина и структуру нейромышечных соединений у мышей mdx.
Через 1 сутки после рентгеновского облучения в немиелоблативной дозе 3 Гр мышам mdx внутривенно трансплантировали клетки костного мозга мышей C57BL/6. Через 2, 4, 6, 9 и 12 мес. после трансплантации на гистологических препаратах четырехглавой мышцы бедра и диафрагмы методом имммуногистохимии по окраске антителами к дистрофину определяли количество дистрофин-положительных мышечных волокон, погибших волокон и волокон, не имеющих центрально расположенных ядер. Нейромышечные соединения окрашивали тетраметилродамин-α-бунгаротоксином.
Было показано увеличение количества дистрофин-положительных мышечных волокон в четырехглавой мышце бедра до 27,6±6,7% через 6 мес. после трансплантации и их снижение до 5,1±1,1% через 12 мес., а также увеличение количества поперечнополосатых мышечных волокон, не имеющих центрально расположенных ядер, и уменьшение количества погибших мышечных волокон. Аналогичные изменения были обнаружены в поперечнополосатых мышечных волокнах диа- фрагмы мышей mdx. Кроме того, после трансплантации клеток костного мозга увеличивалось количество нейромышечных соединений с нормальной структурой. Таким образом, немиелоаблативная трансплантация клеток костного мозга мышей «дикого» типа может рассматриваться как один из способов лечения моногенного заболевания — мышечной дистрофии у мышей mdx.
Факторы, индуцируемые гипоксией (HIFs), являются ДНК-связывающими транскрипционными факторами, которые играют ключевую роль в адаптивной реакции на гипоксические условия. HIFs стабилизируются при гипоксии, но деградируют при нормальной концентрации кислорода.
Cубъединица HIF-2α вовлечена в механизмы регуляции транскрипционных факторов, контролирующих процессы самообновления в плюрипотентных стволовых клетках человека, эмбрионального развития сердечно-сосудистой системы, а также ангиогенеза путем активации каскада ангиогенных факторов в физиологических и патологических процессах. На сегодняшних ишемических и онкологических заболеваний. Однако выбор оптимальных методов эффективной регуляции HIF-2α остается нерешенной задачей. Целью исследования является получение эмбриональных стволовых клеток человека с повышенной экспрессией HIF-2α при нормальной концентрации кислорода за счет сайленсинга INT6, регулятора HIF-2α. Генетически модифицированные эмбриональные стволовые клетки человека с повышенной экспрессией HIF-2α были получены в условиях нормального содержания кислорода с помощью системы геномного редактирования CRISPR/Cas9, направленной на формирование делеции участка гена INT6 — ингибитора HIF-2α. Исследование генетически модифицированных эмбриональных стволовых клеток человека может внести вклад в понимание связи гипоксии и плюрипотентности, а получение дифференцированных эндотелиальных производных плюрипотентных стволовых клеток с повышенной экспрессией HIF-2α и усиленным регенеративным потенциалом стать основой для разработки перспективных стратегий борьбы с ишемическими заболеваниями.
Все больше исследований свидетельствуют о том, что нервная и иммунная системы активно взаимодействуют между собой. Изучение механизмов, лежащих в основе развития септического шока, привело к открытию качественно нового типа нейро-иммунных взаимодействий — холинергического противовоспалительного пути с участием блуждающего нерва. Однако несмотря на то, что электрическая стимуляция блуждающего нерва уже активно применяется для снятия симптомов некоторых аутоиммунных заболеваний, многие молекулярные и клеточные аспекты холинергического противовоспалительного пути остаются неизвестными или спорными. В настоящем обзоре рассматриваются механизмы рецепции медиаторов воспаления афферентными окончаниями блуждающего нерва и клетками нервной ткани в области area postrema, нервные центры, предположительно участвующие в обработке иммунной информации, эфферентные парасимпатические эффекты на иммунную систему, в частности выделение провоспалительных цитокинов макрофагами селезенки, а также роль холинергического противовоспалительного пути в поддержании гомеостаза в организме.
Под генной терапией понимают лечение различных групп заболеваний путем замены поврежденных генов, введения новых генов или изменения их экспрессии. Это относительно мо- лодая и активно развивающаяся область медицины. Директивы правового регулирования обращения генотерапевтических средств, в части их производства, доклинических и клинических исследований, а также получения разрешения на продажу, регулярно обновляются. В данной работе представлен обзор существующих в мире подходов к проведению исследований генотерапевтических лекарственных средств и процедур их «ускоренной регистрации». Также в статье суммируется опыт МГУ им. М.В. Ломоносова по разработке и созданию векторов нового направления — генной терапии для доставки нескольких терапевтических белков. В ближайшем будущем этот подход может быть использован для повышения эффективности генной терапии, направленной на стимуляцию роста сосудов, нервных окончаний и регенерацию тканей.
Издательство
- Издательство
- ФНКЦ ФХМ ИМ. Ю.М. ЛОПУХИНА ФМБА РОССИИ
- Регион
- Россия, Москва
- Почтовый адрес
- 119435, г Москва, р-н Хамовники, ул Малая Пироговская, д 1А
- Юр. адрес
- 119435, г Москва, р-н Хамовники, ул Малая Пироговская, д 1А
- ФИО
- Лагарькова Мария Андреевна (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- Контактный телефон
- +7 (499) 2467721
- Сайт
- https://rcpcm.ru/