Факторы, индуцируемые гипоксией (HIFs), являются ДНК-связывающими транскрипционными факторами, которые играют ключевую роль в адаптивной реакции на гипоксические условия. HIFs стабилизируются при гипоксии, но деградируют при нормальной концентрации кислорода.
Cубъединица HIF-2α вовлечена в механизмы регуляции транскрипционных факторов, контролирующих процессы самообновления в плюрипотентных стволовых клетках человека, эмбрионального развития сердечно-сосудистой системы, а также ангиогенеза путем активации каскада ангиогенных факторов в физиологических и патологических процессах. На сегодняшних ишемических и онкологических заболеваний. Однако выбор оптимальных методов эффективной регуляции HIF-2α остается нерешенной задачей. Целью исследования является получение эмбриональных стволовых клеток человека с повышенной экспрессией HIF-2α при нормальной концентрации кислорода за счет сайленсинга INT6, регулятора HIF-2α. Генетически модифицированные эмбриональные стволовые клетки человека с повышенной экспрессией HIF-2α были получены в условиях нормального содержания кислорода с помощью системы геномного редактирования CRISPR/Cas9, направленной на формирование делеции участка гена INT6 — ингибитора HIF-2α. Исследование генетически модифицированных эмбриональных стволовых клеток человека может внести вклад в понимание связи гипоксии и плюрипотентности, а получение дифференцированных эндотелиальных производных плюрипотентных стволовых клеток с повышенной экспрессией HIF-2α и усиленным регенеративным потенциалом стать основой для разработки перспективных стратегий борьбы с ишемическими заболеваниями.
Идентификаторы и классификаторы
В организме человека большинство клеток и тканей в норме функционируют при концентрации кислорода менее 10%, и для регуляции гомеостатического баланса кислорода в процессе эволюции сформировались специальные механизмы. Ключевыми регуляторами клеточного ответа на понижение физиологического содержания кислорода (гипоксию) являются транскрипционные факторы HIFs, индуцируемые гипоксией [1, 2]. HIFs регулируют адаптивный ответ на недостаток кислорода путем активации ряда генов-мишеней [3–5].
Список литературы
- Cassavaugh J., Lounsbury K.M. Hypoxia-mediated biological control. J. Cell. Biochem. 2011; 112(3): 735–44.
- Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148(3): 399–408.
- Semenza G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003; 3(10): 721–32.
- Semenza G.L. Oxygen Sensing, Hypoxia-Inducible Factors, and Disease Pathophysiology. Annu. Rev. Pathol. Mech. Dis. 2014; 9(1): 47–71.
- Manalo D.J., Rowan A., Lavoie T. et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005; 105(2): 659–69.
- Hashimoto T., Shibasaki F. Hypoxia-inducible factor as an angiogenic
master switch. Front. Pediatr. 2015; 3: 33. - Slemc L., Kunej T. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumour Biol. 2016; 37(11): 51–61.
- Dong X., Sun B., Zhao X. et al. Expression of relative-protein of hypoxia-inducible factor-1α in vasculogenesis of mouse embryo. J. Biol. Res. 2014; 21(1): 4.
- Greijer A.E., van der Groep P., Kemming D. et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J. Pathol. 2005; 206(3): 291–304.
- Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed. Res. Int. 2015; 2015: 549412.
- Schellinge I.N., Cordasic N., Panesar J. et al. Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease. Kidney Int. 2017; 91(3): 616–27.
- Tang N., Wang L., Esko J. et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004; 6(5): 485–95.
- Kaelin Jr.W.G., Ratcliffe Sir P.J., Semenza G.L. Press release: The Nobel Prize in Physiology or Medicine 2019, https://www.nobelprize.org/ prizes/medicine/2019/press-release/.
- Vink A., Schoneveld A.H., Lamers D. et al. HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis 2007; 195(2): 69–75.
- Talks K.L., Turley H., Gatter K.C. et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 2000; 157(2): 411–21.
- Duscher D., Januszyk M., Maan Z.N. et al. Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing. Plast. Reconstr. Surg. 2017; 139(3): 695–706.
- Chen L., Uchida K., Endler A. Mammalian tumor suppressor Int6 specifically targets hypoxia inducible factor 2 alpha for degradation by hypoxia- and pVHL-independent regulation. J. Biol. Chem. 2007; 282(17): 12707–16.
- Chen L., Uchida K., Endler A. et al. Mammalian tumor suppressor INT6 specifically targets hypoxia inducible factor 2 alpha for dеgradation by hypoxia-and pVHL-independent regulation. J. Biol. Chem. 2007; 282(17): 12707–16.
- Hashimoto T., Chen L., Kimura H. et al. Silencing of eIF3e promotes blood perfusion recovery after limb ischemia through stabilization of hypoxia-inducible factor 2α activity. J. Vasc. Surg. 2016; 64(1): 219–26.
- Cowan C.A., Klimanskaya I., McMahon J. et al. Derivation of Embryonic Stem-Cell Lines from Human Blastocysts. N. Engl. J. Med. 2004; 350(13): 1353–6.
- Lagarkova M.A., Volchkov P.Y., Lyakisheva A.V. Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle 2006; 5(4): 416–20.
- Prokhorovich M.A., Lagar’kova M.A., Shilov A.G. Cultures of hESM human embryonic stem cells: Chromosomal aberrations and karyotype stability. Bull. Exp. Biol. Med. 2007; 144(1): 126–9.
- Linden T., Katschinski D., Eckhardt M. The antimycotic ciclopirox FASEB J. 2003; 17(6): 761–3.
- Yang L., Shen L., Li G. Silencing of hypoxia inducible factor-1α gene attenuated angiotensin II-induced abdominal aortic aneurysm in apolipoprotein-deficient mice. Atherosclerosis 2016; 252: 40–9.
- Chu C.Y., Jin Y.T., Zhang W. et al. CA IX is upregulated in CoCl2- induced hypoxia and associated with cell invasive potential and a poor prognosis of breast cancer. Int. J. Oncol. 2016; 48(1): 271–80.
- Wang G.L., Semenza G.L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 1993; 268(29): 21513–8.
- Gunshin H., Mackenzie B., Berger U.V. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388(6641): 482–8.
- Taniguchi C.M., Miao Y.R., Diep A.N. et al. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci. Transl. Med. 2014; 6(236): 236–64.
- Yuan Q., Bleiziffer O., Boos A.M. et al. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnol. 2014; 14(1): 112.
- Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819–23.
- Медведев С.П., Шевченко А.И., Сухих Г.Т. и соавт. Протокол иммунофлуоресцентного окрашивания. В: Власов В.В., редактор. Индуцированные плюрипотентные стволовые клетки. 1-e издание. Новосибирск: Издательство СО РАН; 2011: 133–7. [Medvedev S.P., Shevchenko A.I., Sukhoi G.T. et al. Immunofluorescence staining protocol. In: Vlasov V.V., editor. Induced pluripotent stem cells. 1st ed. Novosibirsk: Publishing house of SB RAS; 2011: 133–7].
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001; 25(4): 402–8.
- Живень М.К., Захарова И.С., Смирнова А.М. и соавт. CRISPR/ Cas9-опосредованное получение генетически модифицированной линии плюрипотентных стволовых клеток человека, экспрессирующих HIF — фактор, индуцируемый гипоксией. В: Деев Р.В., Павлов И.П., ред. Материалы Международного конгресса CRISPR-2018; 2018 сент. 10–14; Новосибирск; Гены и Клетки 2018, приложение 2. стр. 30. [Zhiven M.K., Zakharova I.S., Smirnova A.M. et al. CRISPR/Cas9-mediated obtaining of genetically modified human pluripotent stem cells expressing HIF– hypoxia inducible factor. In: Deev R.V., Pavlov I.P., editors. Materials of the CRISPR-2018 International Congress; 2018 Sep 10–14; Novosibirsk; Genes & Cells 2018, appendix 2. p. 30].
- Singh M., Chaudhry P., Parent S. et al. Ubiquitin-Proteasomal Degradation of COX-2 in TGF-β Stimulated Human Endometrial Cells Is Mediated Through Endoplasmic Reticulum Mannosidase I. Endocrinology 2012; 153(1): 426–37.
- Dunwoodie S.L. The Role of Hypoxia in Development of the Mammalian Embryo. Developmental Cell 2009; 17(6): 755–73.
- Jauniaux E., Watson A., Ozturk O. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy. Hum. Reprod. 1999; 14(11): 2901–4.
- Rodesch F., Simon P., Donner C. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol. 1992; 80(2): 283–5.
- Ezashi T., Das P., Roberts R.M. Low O2 tensions and the prevention of differentiation of hES cells. PNAS USA 2005; 102(13): 4783–8.
- Forsyth N.R., Musio A., Vezzoni P.W. Physiologic Oxygen Enhances Human Embryonic Stem Cell Clonal Recovery and Reduces Chromosomal Abnormalities. Cloning Stem Cells 2006; 8(1): 16–23.
- Forristal C.E., Wright K.L., Hanley N.A. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 2010; 139(1): 85–97.
- Lengner C.J., Gimelbrant A.A., Erwin J.A. et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 2010; 141(5): 872–83.
- Mutoh T., Sanosaka T., Ito K. Oxygen levels epigenetically regulate fate switching of neural precursor cells via hypoxia-inducible factor 1α-Notch signal interaction in the developing brain. Stem Cells 2012; 30(3): 561–9.
- Studer L., Csete M., Lee S.H. et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 2000; 20(19): 7377–83.
- Ross H.H., Sandhu M.S., Cheung T.F. et al. In vivo intermittent hypoxia elicits enhanced expansion and neuronal differentiation in cultured neural progenitors. Exp. Neurol. 2012; 235(1): 238–45.
- Morrison S.J., Csete M., Groves A.K. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 2000; 20(19): 7370–6.
- Behbahan I.S., Duan Y., Lam A. et al. New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Hepatocytes. Stem Cell Reviews and Reports 2011; 7(3): 748–59.
- Si-Tayeb K., Noto F.K., Nagaoka M. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010; 51(1): 297–305.
- Bae D., Mondragon-Teran P., Hernandez D. et al. Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells. Stem Cells Dev. 2012; 21(8): 1344–55.
- Salvagiotto G., Burton S., Daigh C.A. A defined, feeder-free, serumfree system to generate In Vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PLoS One 2011; 6(3): e17829.
- Yoshida Y., Takahashi K., Okita K. Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell 2009; 5(3): 237–41.
- Sesen J., Casaos J., Scotland S.J et al. The Bad, the Good and eIF3e/ INT6. Front. Biosci. 2017; 22: 1–20.
- Petruzzelli R., Christensen D.R., Parry K.L. HIF-2α Regulates NANOG Expression in Human Embryonic Stem Cells following Hypoxia and Reoxygenation through the Interaction with an Oct-Sox Cis Regulatory Element. PLoS One 2014; 9(10): e108309.
- Sugimoto K., Matsuura T., Nakazono A. Effects of hypoxia inducible factors on pluripotency in human iPS cells. Microsc. Res. Tech. 2018; 81(7): 749–54.
- Zhdanov A.V., Okkelman I.A., Collins W.J. A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. Biochim. Biophys. Acta 2015; 1847(10): 1254–66.
Выпуск
Другие статьи выпуска
Митомицин С — алкилирующий агент, относящийся к группе одноцентровых мутагенов и наиболее часто использующийся в экспериментах in vitro по моделированию мутагенеза. Целью работы было изучение цитотоксических и генотоксических эффектов митомицина С на эндотелиоциты артерий, в различной степени подверженных развитию атеросклероза, in vitro. С помощью колориметрического МТТ-теста была изучена цитотоксичность различных концентраций митомицина С, а с использованием микроядерного теста проведена оценка генотоксических эффектов данного мутагена на культурах эндотелиальных клеток коронарной и внутренней грудной артерий человека, культивируемых в условиях индуцированного мутагенеза. После 6 ч. культивирования ни одна из концентраций митомицина С не вызывала значимого снижения количества жизнеспособных клеток по сравнению с контролем, а увеличение времени мутагенной нагрузки до 24 ч. приводило к достоверному (p<0,05) уменьшению количества жизнеспособных эндотелиоцитов и внутренней грудной артерий при концентрациях митомицина С выше 350 нг/мл и 200 нг/мл, соответственно. Кроме того, в культурах, обработанных митомицином С, было отмечено почти трехкратное превышение частоты цитогенетических повреждений по нескольким маркерам (количеству клеток с микроядрами, нуклеоплазменными мостами и ядерными протрузиями) по сравнению с контролем (p<0,01), причем уровень повреждений ДНК в клетках внутренней грудной артерии был более высоким по сравнению с таковым в клетках коронарной артерии. Таким образом, было установлено, что эндотелиальные клетки различных сосудов отличаются порогом чувствительности к цитотоксическому действию алкилирующего агента и характеризуются различным уровнем генотоксического стресса в ответ на действие мутагена.
Мышечная дистрофия Дюшенна — Х-сцепленная рецессивная мышечная дистрофия, связанная с мутациями в гене белка дистрофина. Наиболее распространенной лабораторной моделью мышечной дистрофии Дюшенна являются мыши mdx. Для поперечнополосатых мышечных волокон мышей mdx характерно отсутствие дистрофина, наличие центрально расположенных ядер в волокнах, а также высокий уровень обновления поперечнополосатых мышечных волокон. Кроме того, у мышей mdx на- блюдается нарушение структуры нейромышечных соединений, выражающееся в распаде больших кластеров ацетилхолиновых рецепторов, имеющих форму ветвей, на мелкие кластеры, имеющие форму островков. Цель работы — оценить влияние немиелоаблативной трансплантации клеток костного мозга мышей «дикого» типа C57BL/6 на синтез дистрофина и структуру нейромышечных соединений у мышей mdx.
Через 1 сутки после рентгеновского облучения в немиелоблативной дозе 3 Гр мышам mdx внутривенно трансплантировали клетки костного мозга мышей C57BL/6. Через 2, 4, 6, 9 и 12 мес. после трансплантации на гистологических препаратах четырехглавой мышцы бедра и диафрагмы методом имммуногистохимии по окраске антителами к дистрофину определяли количество дистрофин-положительных мышечных волокон, погибших волокон и волокон, не имеющих центрально расположенных ядер. Нейромышечные соединения окрашивали тетраметилродамин-α-бунгаротоксином.
Было показано увеличение количества дистрофин-положительных мышечных волокон в четырехглавой мышце бедра до 27,6±6,7% через 6 мес. после трансплантации и их снижение до 5,1±1,1% через 12 мес., а также увеличение количества поперечнополосатых мышечных волокон, не имеющих центрально расположенных ядер, и уменьшение количества погибших мышечных волокон. Аналогичные изменения были обнаружены в поперечнополосатых мышечных волокнах диа- фрагмы мышей mdx. Кроме того, после трансплантации клеток костного мозга увеличивалось количество нейромышечных соединений с нормальной структурой. Таким образом, немиелоаблативная трансплантация клеток костного мозга мышей «дикого» типа может рассматриваться как один из способов лечения моногенного заболевания — мышечной дистрофии у мышей mdx.
Все больше исследований свидетельствуют о том, что нервная и иммунная системы активно взаимодействуют между собой. Изучение механизмов, лежащих в основе развития септического шока, привело к открытию качественно нового типа нейро-иммунных взаимодействий — холинергического противовоспалительного пути с участием блуждающего нерва. Однако несмотря на то, что электрическая стимуляция блуждающего нерва уже активно применяется для снятия симптомов некоторых аутоиммунных заболеваний, многие молекулярные и клеточные аспекты холинергического противовоспалительного пути остаются неизвестными или спорными. В настоящем обзоре рассматриваются механизмы рецепции медиаторов воспаления афферентными окончаниями блуждающего нерва и клетками нервной ткани в области area postrema, нервные центры, предположительно участвующие в обработке иммунной информации, эфферентные парасимпатические эффекты на иммунную систему, в частности выделение провоспалительных цитокинов макрофагами селезенки, а также роль холинергического противовоспалительного пути в поддержании гомеостаза в организме.
Болезнь Тея-Сакса (OMIM 272800) — наследственное аутосомно-рецессивное заболевание, обусловленное дефицитом фермента β-гексозаминидазы А (HexA), в результате чего происходит накопление GM2-ганглиозидов в нервной и других тканях организма. Дефицит фермента возникает вследствие различных мутаций гена HEXA. Тяжесть клинических признаков при болезни Тея-Сакса определяется остаточной активностью HexA, зависящей от типа (вида) мутации. В настоящее время не существует эффективного лечения болезни Тея-Сакса. Описаны клинические случаи применения субстрат-редуцирующей терапии, трансплантации костного мозга или пуповинной крови, однако терапевтическая эффективность данных методов остается недостаточной для предотвращения усугубления неврологических нарушений у пациентов с болезнью Тея-Сакса. Обнадеживающие результаты получены с использованием ме- тодов генной терапии для доставки генов дикого типа, кодирующих α и β субъединицы фермента HexA. В настоящем обзоре обсуждаются терапевтические стратегии лечения болезни Тея- Сакса, а также методы диагностики и моделирование этой патологии на животных для оценки эффективности новых методов терапии болезни Тея-Сакса.
Под генной терапией понимают лечение различных групп заболеваний путем замены поврежденных генов, введения новых генов или изменения их экспрессии. Это относительно мо- лодая и активно развивающаяся область медицины. Директивы правового регулирования обращения генотерапевтических средств, в части их производства, доклинических и клинических исследований, а также получения разрешения на продажу, регулярно обновляются. В данной работе представлен обзор существующих в мире подходов к проведению исследований генотерапевтических лекарственных средств и процедур их «ускоренной регистрации». Также в статье суммируется опыт МГУ им. М.В. Ломоносова по разработке и созданию векторов нового направления — генной терапии для доставки нескольких терапевтических белков. В ближайшем будущем этот подход может быть использован для повышения эффективности генной терапии, направленной на стимуляцию роста сосудов, нервных окончаний и регенерацию тканей.
Издательство
- Издательство
- ФНКЦ ФХМ ИМ. Ю.М. ЛОПУХИНА ФМБА РОССИИ
- Регион
- Россия, Москва
- Почтовый адрес
- 119435, г Москва, р-н Хамовники, ул Малая Пироговская, д 1А
- Юр. адрес
- 119435, г Москва, р-н Хамовники, ул Малая Пироговская, д 1А
- ФИО
- Лагарькова Мария Андреевна (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- Контактный телефон
- +7 (499) 2467721
- Сайт
- https://rcpcm.ru/