Архив статей журнала

ОДНОСТОРОННЯЯ ЗАДАЧА ДЛЯ ОПЕРАТОРА БАРЕНБЛАТТА - ЖЕЛТОВА - КОЧИНОЙ (2022)
Выпуск: № 4 (2022)
Авторы: САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, Саженкова Елена Владимировна, САЖЕНКОВА ТАТЬЯНА ВЛАДИМИРОВНА

Доклад посвящён исследованию односторонней задачи для псевдопараболического оператора Баренблатта - Желтова - Кочиной в одномерном случае. Эта задача формулируется в виде вариационного неравенства и с физической точки зрения моделирует нестационарный процесс фильтрации вязкой жидкости в трещиновато-пористой галерее с ограничением на модуль скорости фильтрации по трещинам. Теорема существования слабого обобщённого решения этой задачи известна в литературе как в одномерном, так и многомерном случаях, и следует из результатов, полученных М. Пташник (Nonlinear Analysis, 2007, vol. 66, pp. 2653-2675) с применением метода штрафа. При этом оператор штрафа выбирался в стандартном виде. В настоящем исследовании рассматривается приближённая начально-краевая задача с оператором штрафа А. Каплана и изучается семейство её решений. Благодаря специфической структуре оператора А. Каплана, удаётся получить повышенную регулярность слабого обобщённого решения исходной задачи по отношению к ранее известным свойствам регулярности, а также найти усиленное свойство аппроксимации этого решения последовательностью решений приближённой задачи с оператором А. Каплана. Основные результаты исследования подробно изложены в статье [Т. В. Саженкова, С. А. Саженков, Е. В. Саженкова. Регулярность и аппроксимация решения односторонней задачи для псевдопараболического оператора Баренблатта - Желтова - Кочиной // Матем. заметки СВФУ, 2022, 29 (1), 69 - 87].

Сохранить в закладках
УСРЕДНЁННЫЕ ДВУХМАСШТАБНЫЕ УРАВНЕНИЯ ДИНАМИКИ ТЕРМОУПРУГОГО КОМПОЗИТА (2022)
Выпуск: № 4 (2022)
Авторы: САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, ЧЖУН Ц

Доклад посвящён исследованию пространственно-одномерной начально-краевой задачи для классической системы нестационарных уравнений линейной термоупругости с периодически быстро осциллирующими по пространственной переменной физическими характеристиками. Задача содержит положительный малый параметр - отношение минимального периода пространственных осцилляций и всего термоупругого тела. Проводится процедура гомогенизации, то есть предельный переход при

Сохранить в закладках
МНОГОМАСШТАБНЫЙ АНАЛИЗ АНТИПЛОСКОГО ДЕФОРМИРОВАНИЯ ТЕРМОУПРУГОГО КОМПОЗИТА (2021)
Выпуск: № 3 (2021)
Авторы: САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, ГИЛЕВ ПАВЕЛ ВЯЧЕСЛАВОВИЧ, Леонова Эвелина Ивановна

Доклад посвящён исследованию статической модели антиплоского сдвига термоупругого композита - тела, представляющего собой термоупругую связующую матрицу, прошитую тонкими армирующими нитями. Постановка содержит два малых положительных параметра δ и ε, характеризующих толщину каждой отдельной нити и расстояние между двумя соседними нитями, соответственно. Исследуется асимптотическое поведение решений при стремлении малых параметров к нулю. В результате конструируются две модели, описывающие предельные режимы. Основные результаты настоящего исследования подробно изложены в статье [S. A. Sazhenkov, I. V. Fankina, A. I. Furtsev, P. V. Gilev, A. G. Gorynin, O. G. Gorynina, V. M. Karnaev, and E. I. Leonova, Siberian Electronic Mathematical Reports, 2021, 18(1), 282- 318].

Сохранить в закладках
АППРОКСИМАЦИЯ РЕШЕНИЯ НЕСТАЦИОНАРНОЙ ОДНОСТОРОННЕЙ ЗАДАЧИ ДИФФУЗИИ-АБСОРБЦИИ (2020)
Выпуск: № 2 (2020)
Авторы: САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, САЖЕНКОВА ТАТЬЯНА ВЛАДИМИРОВНА

Доклад посвящён исследованию начально-краевой задачи для нестационарного нелинейного уравнения диффузии-абсорбции с ограничением значений диффузионного потока и однородными начальными и граничными условиями. Изучается семейство приближённых решений, получаемых с помощью метода штрафа с применением интегрального оператора штрафа А. Каплана. Доказывается, что семейство приближённых решений сильно сходится к решению исходной задачи в анизотропном пространстве Бохнера при стремлении малого параметра регуляризации к нулю. Затем в результате систематического изучения структуры оператора штрафа устанавливается свойство равномерной аппроксимации в пространстве непрерывных по совокупности переменных функций. Настоящее исследование является развитием работ [1-3], более точно, их продолжением на нестационарный случай.

Сохранить в закладках
ЭФФЕКТИВНЫЕ ХАРАКТЕРИСТИКИ МЕХАНИЧЕСКОЙ СИСТЕМЫ "ЩЕТИНИСТАЯ СТРУКТУРА - ВЯЗКАЯ ЖИДКОСТЬ" (2020)
Выпуск: № 2 (2020)
Авторы: САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, Саженкова Елена Владимировна

В настоящей заметке излагаются новые результаты о свойствах эффективных механических характеристик усредненной модели взаимодействия слабо сжимаемой вязкой жидкости (или газа) и погруженной в нее двухуровневой щетинистой структуры. Эта модель была построена авторами ранее (см. [1]-[3]) с помощью методов теории гомогенизации, исходя из базовых уравнений микроструктуры. Она естественным образом обобщает хорошо известную систему К.-Х. Хоффмана, Н. Д. Боткина и В. Н. Старовойтова [4], сконструированную в случае одноуровневой структуры, и в приложениях может быть использована, например, в описании аэродинамики в окрестности листа растения, в моделировании поверхности эпителия кровеносных сосудов; и при проектировании биотехнологических устройств, работающих в жидкостях.

Сохранить в закладках