Архив статей

КОДЕКС ЭТИКИ ПРИМЕНЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В СФЕРЕ ОХРАНЫ ЗДОРОВЬЯ В РОССИЙСКОЙ ФЕДЕРАЦИИ (2025)
Выпуск: № 2 (2025)
Авторы: Королева Юлия Ивановна, ХОХЛОВ А.Л., АРТЕМОВА О.Р., КОСТИНА Е.В., Зарубина Татьяна Васильевна

В статье рассматривается процесс разработки и утверждения первого в Российской Федерации Кодекса этики применения искусственного интеллекта (ИИ) в сфере охраны здоровья. На фоне активного внедрения ИИ-технологий в медицинскую практику (зарегистрировано 39 соответствующих медицинских изделий) акцент сделан на важности формирования этических норм, обеспечивающих защиту прав пациентов, повышение доверия к технологиям и стандартизацию процессов. Проведен анализ международных подходов к этике ИИ в здравоохранении (ЕС, США, Великобритания, Канада, Австралия, Китай, Индия), и обозначена необходимость гармонизации отечественного кодекса с международными инициативами. Представлены этапы разработки документа, в которых приняли участие сотрудники профильных департаментов Минздрава России, главные внештатные специалисты и эксперты, а также структура и основные положения утвержденной версии Кодекса. Выделены ключевые принципы: прозрачность, конфиденциальность, справедливость, ограниченная автономность, контроль и ответственность. Финальная версия документа была опубликована в марте 2025 года на портале ЕГИСЗ после согласования с Межведомственной рабочей группой при Минздраве России. Кодекс призван стать фундаментом для устойчивого и безопасного внедрения ИИ в систему здравоохранения.

Сохранить в закладках
ИСПОЛЬЗОВАНИЕ ИНТЕРФЕЙСОВ МОЗГ–КОМПЬЮТЕР ДЛЯ ПЕРСОНАЛИЗИРОВАННОЙ НЕЙРОРЕАБИЛИТАЦИИ: РОЛЬ СУБЪЕКТИВНОГО ВОСПРИЯТИЯ И НЕЙРОФИЗИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ (2025)
Выпуск: № 2 (2025)
Авторы: АНТИПОВ В.М., СМИРНОВ Н.М., Бадарин Артём Александрович, Киселев Антон Робертович, Андреев Андрей Викторович, Куркин Семён Андреевич, Храмов Александр Евгеньевич, Драпкина Оксана Михайловна

Работа посвящена оценке соответствия нейрофизиологических и субъективных признаков моторного воображения в контексте нейрореабилитации с использованием интерфейсов мозг–компьютер (ИМК) и выполнена в рамках разработки программно-аппаратного комплекса (ПАК) для восстановления когнитивных и моторных функций верхних конечностей при лёгких и выраженных нарушениях.

Материалы и методы: В исследовании приняли участие 24 здоровых добровольца. Электроэнцефалограмма регистрировалась при выполнении заданий на моторное воображение с различными визуальными стимулами. Анализ включал расчёт сенсомоторной десинхронизации (ERD), классификацию с использованием пространственных фильтров и линейного дискриминантного анализа, а также оценку корреляции с субъективными самооценками.

Результаты: Латеральность воображаемого движения оказала значимое влияние на выраженность ERD. Субъективная уверенность участников не коррелировала ни с нейрофизиологическими показателями, ни с уверенностью классификатора при распознавании воображаемого движения. При этом модели продемонстрировали высокую точность классификации моторных представлений.

Выводы: Выявленное несоответствие между субъективной и объективной оценкой подчеркивает необходимость внедрения биологической обратной связи и персонализированных ИМК в составе ПАК для повышения эффективности нейрореабилитации.

Сохранить в закладках
НЕЙРОСЕТЕВАЯ ГРАФОВАЯ АРХИТЕКТУРА ПРОЗРАЧНОГО ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В МЕДИЦИНЕ (2025)
Выпуск: № 2 (2025)
Авторы: АНДРИКОВ Д.А., Березкин Дмитрий Валерьевич, ПОПОВ А.Ю., Пролетарский Андрей Викторович

В статье представлен подход к созданию информационной системы на основе нейросетевой графовой архитектуры. Этот подход призван снивелировать проблему явного объяснения решений, принимаемых искусственным интеллектом — проблема прозрачности (объяснимости, надежности, доверенности). Использование технологий искусственного интеллекта в медицине носит «сквозной» характер и способствует созданию условий для улучшения эффективности и формирования принципиально новых направлений деятельности: автоматизации рутинных (повторяющихся) операций; использования автономного интеллектуального оборудования и робототехнических комплексов, интеллектуальных систем управления; повышения эффективности процессов планирования, прогнозирования и принятия врачебных решений. Перспективной технологией предлагаемого подхода является применение графовой нейросетевой архитектуры в составе информационной системы для обработки и анализа данных. В статье реализован пример классификации узлов графов на открытом датасете с кардиоданными условно-здоровых людей и пациентов.

Сохранить в закладках
ПОДХОД К РАЗРАБОТКЕ МОДУЛЬНОЙ АРХИТЕКТУРЫ БАЗЫ ДАННЫХ В ОБЛАСТИ ИНТЕНСИВНОЙ ТЕРАПИИ И РЕАНИМАЦИИ (2025)
Выпуск: № 2 (2025)
Авторы: ГЛУШКОВ В.С., ВДОВИН Е.П., Ермаков Николай Владимирович, Бакановская Людмила Николаевна, Чернышева Татьяна Юрьевна, КРАВЕЦ В.Д., Соболев И. С., ВОЛКОВ Д.Е., Миляев Михаил Владимирович

В статье представлено проектирование базы данных, предназначенной для оптимизации хранения и обработки медицинских данных, с акцентом на поддержку принятия решений в области интенсивной терапии и реанимации. Целью исследования является разработка логической модели базы данных на основе передовых принципов и методов, используемых в международных проектах открытых баз данных, способной минимизировать ошибки, связанные с человеческим фактором, и улучшить точность прогноза состояния пациентов в реальном времени.

Методология работы основана на сравнительном анализе существующих международных медицинских баз данных, таких как MIMIC-IV и eICU. Для проектирования новой базы данных применен инновационный модульный подход, который обеспечивает гибкость и масштабируемость системы.

Основные результаты работы заключаются в создании логической модели базы данных, которая может быть эффективно использована в российской системе здравоохранения, в том числе в удаленных и малоресурсных регионах. Логическая модель разработана с учётом специфики медицинских данных, включая модули для хранения информации о госпитализациях, показателях состояния пациентов, лабораторных исследованиях, медикаментозных назначениях и других аспектах клинической практики. Важной частью исследования является интеграция базы данных с российскими медицинскими информационными системами и адаптация к национальным стандартам и нормативным требованиям.

Созданная архитектура логической модели минимизирует влияние человеческого фактора, автоматизирует анализ данных и может использоваться в разработке систем поддержки принятия врачебных решений. Практическая значимость заключается в повышении качества медицинской помощи и снижении нагрузки на персонал. Система применима в российских учреждениях, включая удаленные регионы, и способствует цифровизации здравоохранения.

Сохранить в закладках
К ВОПРОСУ ОБ ОРГАНИЗАЦИИ ОБЕЗЛИЧИВАНИЯ И ИСПОЛЬЗОВАНИЯ ДАННЫХ РЕАЛЬНОЙ КЛИНИЧЕСКОЙ ПРАКТИКИ (2025)
Выпуск: № 2 (2025)
Авторы: СТОЛБОВ А.П.

Рассмотрены требования к обезличенным данным реальной клинической практики (ДРКП), основные методы обезличивания и синтетизации ДРКП, позволяющие сохранить их клиническую информативность. Приведено описание процедуры сбора, обезличивания и использования ДРКП, которая обеспечивает высокую стойкость обезличенных данных относительно угроз нарушения конфиденциальности сведений, составляющих врачебную тайну.

Сохранить в закладках
ОБУЧЕНИЕ ПО ПРОГРАММЕ СПЕЦИАЛИТЕТА 30.05.03 «МЕДИЦИНСКАЯ КИБЕРНЕТИКА» В ВУЗАХ РФ (2025)
Выпуск: № 2 (2025)
Авторы: Зарубина Татьяна Васильевна, НИКОЛАИДИ Е.Н.

Востребованность специалистов, обладающих глубокими знаниями в предметных областях как медицинского профиля, так и информационных технологий, обусловила существенное увеличение количества вузов, реализующих образовательную программу по направлению подготовки 30.05.03 — «Медицинская кибернетика» и стала причиной необходимости оценки ситуации с обучением студентов по данной специальности. Целью работы является анализ структуры и предметного наполнения образовательной программы по направлению подготовки 30.05.03 «Медицинская кибернетика» в вузах Российской Федерации.

Материалы и методы: сведения, представленные на официальных сайтах вузов и сайтах-агрегаторов для абитуриентов; документы, регламентирующие образовательный процесс по специальности 30.05.03 «Медицинская кибернетика».

Результаты исследования. Анализ основных аспектов образовательных программ по специальности 30.05.03 «Медицинская кибернетика» в десяти вузах РФ показал их соответствие общим требованиям ФГОС по данной специальности при существенном различии в подходах к предметному наполнению.

Выводы. Соответствие образовательных программ только формальным требованиям ФГОС, касающимся их общего объема, структуры и количества профессиональных компетенций, не позволяет гарантировать соответствие выпускников требованиям профессионального стандарта «Врач-кибернетик». Необходимы четкие критерии допустимых различий в предметном наполнении образовательной программы.

Сохранить в закладках
ОБЗОР МИРОВЫХ СИСТЕМ РЕГИСТРАЦИИ МЕДИЦИНСКИХ ИЗДЕЛИЙ (2025)
Выпуск: № 2 (2025)
Авторы: Тарасова Наталья Владимировна, Владзимирский Антон Вячеславович, Петров Евгений Алексеевич, ЗАЮНЧКОВСКИЙ С.Ю.

Все изделия медицинского назначения, как в Российской Федерации, так и в мире, проходят процедуры регистрации. Однако связанные с этим нормы и законодательство регулируются по-разному. Целью данного исследования явилась оценка функциональных возможностей существующей правовой базы и систем регистрации изделий медицинского назначения в некоторых странах мира.

Сохранить в закладках
ФУНКЦИОНАЛЬНЫЕ ТРЕБОВАНИЯ К ИНФОРМАЦИОННЫМ СИСТЕМАМ СБОРА И ОБРАБОТКИ МЕДИКО-СТАТИСТИЧЕСКОЙ ИНФОРМАЦИИ (2025)
Выпуск: № 3 (2025)
Авторы: Поликарпов Александр Викторович, Голубев Никита Алексеевич, РЯБОВА М.А.

В условиях цифровизации здравоохранения принципиально важное значение приобретает создание современных информационных систем для сбора и обработки медицинской статистики. Данная статья представляет разработку и всесторонний анализ функциональных требований к таким системам, рассматривая их как сложные технологические комплексы, объединяющие строгие нормативные требования, передовые цифровые решения и практические потребности медицинских организаций. Особое внимание уделено методологии обеспечения качества данных, принципам интеграции с существующей ИТ-инфраструктурой и созданию условий для аналитической работы на основе собранной статистики.

Сохранить в закладках
МЕТОДИКА ОЦЕНКИ ЦИФРОВОЙ ЗРЕЛОСТИ МЕДИЦИНСКИХ ОРГАНИЗАЦИЙ (2025)
Выпуск: № 3 (2025)
Авторы: Тарасенко Тарас Денисович, Бондарович Александра Федоровна, Булгакова Алина Сергеевна, Тюфилин Денис Сергеевич, Деев Иван Анатольевич, Кобякова Ольга Сергеевна

Цифровая трансформация здравоохранения требует эффективных инструментов для оценки цифровой зрелости медицинских организаций. Настоящее исследование направлено на разработку методики оценки цифровой зрелости, адаптированной к особенностям системы здравоохранения Российской Федерации. В рамках работы проведен анализ нормативных правовых актов, определены ключевые критерии оценки цифровой зрелости, сгруппированные в блоки, и разработан алгоритм расчета уровня цифровой зрелости медицинских организаций. Предложенная нами методика обеспечивает возможность объективной оценки, идентификации проблемных зон и разработки рекомендаций для повышения цифровой зрелости организаций.

Цель. Разработать методику оценки цифровой зрелости медицинских организаций, которая учитывает специфику системы здравоохранения Российской Федерации, позволяет проводить комплексную и объективную оценку уровня цифровой зрелости и формировать рекомендации для улучшения процессов цифровой трансформации.

Материалы и методы. Для разработки методики была сформирована рабочая группа из 14 членов экспертного сообщества с опытом трудовой деятельности в сфере здравоохранения и цифровой трансформации. Проведен анализ нормативных правовых актов и существующих подходов к оценке цифровой зрелости. На основе экспертного опроса выделены ключевые критерии, сгруппированные в пять блоков. Для каждого блока разработаны показатели и алгоритмы расчета, что обеспечивает объективность, прозрачность и возможность автоматизации оценки.

Результаты. Методика оценки цифровой зрелости медицинских организаций позволяет объективно определить уровень их готовности к цифровой трансформации. Методика охватывает основные аспекты цифровизации, обеспечивая комплексный подход к анализу, а также дает возможность выявить ключевые проблемы, затрудняющие цифровую трансформацию, и формировать рекомендации для их устранения. Это делает ее эффективным инструментом для повышения уровня цифровой зрелости медицинских организаций и улучшения качества предоставляемых услуг.

Выводы. Разработанная в ФГБУ «ЦНИИОИЗ» Минздрава России методика оценки цифровой зрелости медицинских организаций является универсальным инструментом для объективной и системной оценки уровня цифровой зрелости. Она учитывает особенности структуры и деятельности организаций, обеспечивая адаптивность к различным условиям и уровням здравоохранения. Методика способствует стандартизации цифровой трансформации, выявлению проблемных зон и формированию индивидуальных рекомендаций для их устранения.

Сохранить в закладках
МЕТОДИКИ ОЦЕНКИ КАЧЕСТВА БОЛЬШИХ ГЕНЕРАТИВНЫХ МОДЕЛЕЙ ДЛЯ БАЗОВЫХ СЦЕНАРИЕВ ПРИМЕНЕНИЯ В ЗДРАВООХРАНЕНИИ (2025)
Выпуск: № 3 (2025)
Авторы: Решетников Роман Владимирович, ТЫРОВ И.А., Васильев Юрий Александрович, Шумская Юлия Федоровна, Владзимирский Антон Вячеславович, Ахмедзянова Дина Альфредовна, Беженова Карина Юрьевна, Варюхина Мария Дмитриевна, СОКОЛОВА М.В., Блохин Иван Андреевич, Войтенко Дарья Андреевна, Мынко Олег Игоревич, Коденко Мария Романовна, Омелянская Ольга Васильевна

Большие генеративные модели (БГМ) обладают значительным потенциалом для здравоохранения и медицинской науки. Несмотря на экспоненциальный рост числа публикаций, качество и результативность научного изучения БГМ остается неудовлетворительной. В научной литературе утверждается необходимость создания стандартизированных подходов для обеспечения безопасной и эффективной интеграции БГМ в клиническую практику. В системе здравоохранения г. Москвы осуществляется апробация БГМ в качестве средства поддержки принятия врачебных решений, которая потребовала создания особых методов и инструментов для оценки их качества. Представлены две методики оценки качества БГМ, разработанные на основе: анализа литературных данных (всего свыше 200 источников); результатов проведенного авторами этапного комплексного тестирования 204 БГМ; эмпирического опыта оценки качества БГМ на выборке из более 12 000 случаев применения. Методики предназначены для двух основных сценариев применения моделей. В их основе лежат (с учетом сценария) принципы формирования тестовой выборки, специально разработанные и валидированные опросники, способы тестирования, унифицированные требования к составу и структуре результатов оценки качества.

Сохранить в закладках
МЕТОДИКА СКРИНИНГОВОГО ОБСЛЕДОВАНИЯ ДЛЯ РАННЕЙ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ НОВООБРАЗОВАНИЙ КОЖИ С ИСПОЛЬЗОВАНИЕМ МОБИЛЬНОЙ ДЕРМАТОСКОПИИ (2025)
Выпуск: № 3 (2025)
Авторы: КОЗАЧОК Е.С., СЕРЕГИН С.С., КОЗАЧОК А. В., ЕЛЕЦКИЙ К.В., САМОВАРОВ О.И.

Цель исследования: разработка методики скринингового обследования пациентов, направленной на раннюю дифференциальную диагностику злокачественных новообразований кожи посредством применения методов дерматоскопии совместно с оптоэлектронными средствами мобильной техники и алгоритмами классификации дерматоскопических изображений, основанных на методах машинного обучения.

Материалы и методы. Для реализации обнаружения злокачественных новообразований и отнесения их к соответствующей нозологической группе применяются методы и алгоритмы машинного обучения и оптического распознавания. Методы оптического распознавания используются в процессе анализа дерматоскопических снимков и обучения алгоритмов и моделей классификации. В качестве применяемых подходов машинного обучения выступают методы многоклассовой и бинарной каскадной двухэтапной классификации технологии машинного обучения, основанной на нейросетевой архитектуре и архитектуре визуальных трансформеров.

Результаты. В ходе экспериментальных оценок многоклассовой классификации (восемь типов злокачественных новообразований) определена наилучшая модель классификации с архитектурой визуального трансформера, характеризующего метриками Accuracy 0,932 и F-мера 0,891 на сформированном наборе данных, включая ISIC-2019 и собственный набор, содержащий 657 изображений. Бинарная каскадная двухэтапная классификация на меланоцитарные и немеланоцитарные новообразования имеет значения Accuracy и F-мера 0,954 и 0,948 (первый этап классификации) и на меланомы и невусы — 0,964 и 0,951 соответственно (второй этап классификации).

Заключение. Полученные количественные значения точности обнаружения злокачественных кожных новообразований разработанной методикой скринингового обследования позволяют рекомендовать внедрение многоклассовой классификации для первичного разделения большого объема дерматоскопических изображений пациентов по нозологическому признаку между профильными специалистами в процессе проведения массовый (выездных) профилактических осмотров, а внедрение каскадной бинарной классификации в условиях первичного приема с ограниченным доступом к профильным специалистам для дифференциации меланомы от других кожных новообразований. Разработанная методика скринингового обследования пациентов может быть внедрена в медицинскую практику в качестве системы поддержки принятия решений врача.

Сохранить в закладках
ОЦЕНКА РЕЗУЛЬТАТИВНОСТИ СИСТЕМЫ ПОДДЕРЖКИ ПРИНЯТИЯ ВРАЧЕБНЫХ РЕШЕНИЙ ДЛЯ ПОСТАНОВКИ ПРЕДВАРИТЕЛЬНОГО ДИАГНОЗА В УСЛОВИЯХ КОНСУЛЬТАТИВНО-ДИАГНОСТИЧЕСКИХ ПОЛИКЛИНИК ГОРОДА МОСКВЫ (2025)
Выпуск: № 3 (2025)
Авторы: Васильев Юрий Александрович, КИРИНА М.В., БЕЗЫМЯННЫЙ А.С., БЛОХИНА Е.В., КАРАМОВ Б.И., АБРОСИМОВ А.С., Арзамасов Кирилл Михайлович, Памова Анастасия Петровна, Казаринова Вероника Евгеньевна

Внедрение системы поддержки принятия врачебных решений (СППВР) в клиническую практику требует тщательного контроля для обеспечения безопасности пациентов и оценки эффективности применения технологий искусственного интеллекта.

Целью данной работы является оценка результативности СППВР «ТОП-3» в условиях консультативно-диагностических поликлиник Департамента здравоохранения города Москвы.

Материалы и методы: Мониторинг работы СППВР «ТОП-3» проводился Департаментом здравоохранения города Москвы с 01.10.2020 по 21.03.2024 (n = 63 809 360 чел.). Рассчитывалась метрика Hit-3, на основе которой принималось решение о необходимости повторного обучения представленной СППВР. Дополнительно было проведено исследование с участием врачей-экспертов: ретроспективный анализ данных на выборке из 3000 пациентов с расчетом согласованности диагнозов от СППВР, врача и эксперта.

Результаты: По результатам мониторинга среднее значение Hit-3 составляло 63,5, 64,5 и 67,7 для первой, второй и третьей версии СППВР соответственно. Экспертиза показала, что в выборке несоответствия диагноза от врача и СППВР (n = 2000) в 80,2% случаев эксперт на основе жалоб соглашался с СППВР, в 11,5% случаях - с врачом, а в 8,3% случаев ставил иной диагноз. В выборке соответствия диагноза врача с одним из диагнозов СППВР (n = 1000) в 50,4% случаев эксперт соглашался с диагнозом от врача и СППВР, в 37,9% случаев – с одним из двух других альтернативных диагнозов СППВР, в 11,7% случаев ставил иной диагноз.

Заключение: Описанная методика мониторинга, дополненная проведением экспертизы, позволила всесторонне оценить внедряемую в систему здравоохранения СППВР. По итогу оценки результативности «ТОП-3» было принято решение о необходимости расширения анализируемого перечня данных электронных медицинских карт, что будет внедрено в следующей версии СППВР «ТОП-3+».

Сохранить в закладках