Архив статей журнала
В последнее время на место основного языка научных и инженерных расчетов выдвигается язык Julia. У ряда пользователей возникает желание работать полностью внутри “экосистемы” Julia, подобно тому, как происходит работа в “экосистеме” Python. Для Julia существуют библиотеки, покрывающие большинство потребностей научно-инженерных расчетов. Перед авторами возникла необходимость использовать символьные вычисления для задач математического моделирования. Поскольку основным языком реализации численных алгоритмов мы выбрали язык Julia, то и задачи компьютерной алгебры хотелось бы решать на этом же языке. Авторы выделили основные функциональные области, задающие разные варианты применения систем компьютерной алгебры. В каждой из областей нами выделены наиболее характерные представители систем компьютерной алгебры на Julia. В результате авторы делают вывод, что в рамках “экосистемы” Julia возможно (и даже удобно) использовать системы компьютерной алгебры.
В данной работе представлен алгоритм вычисления решения задачи Коши для двумерного разностного уравнения с постоянными коэффициентами в точке по коэффициентам разностного уравнения и начальным данным задачи Коши методами компьютерной алгебры. В одномерном случае решение задачи Коши для разностного уравнения не представляет сложности, однако уже в двумерном случае число неизвестных растет на каждом шаге очень быстро. Для автоматизации процесса вычисления решения задачи Коши для двумерного разностного уравнения с постоянными коэффициентами в заданной точке в среде MATLAB был разработан алгоритм, где входными данными являются: матрица коэффициентов, полученная исходя из структуры двумерного полиномиального разностного уравнения; координаты точки, регламентирующей структуру матрицы начальных данных; координаты точки, регламентирующей размерность матрицы начальных данных; матрица начальных данных. Результатом работы алгоритма является решение задачи Коши для двумерного разностного уравнения, представляющее собой значение функции в искомой точке.