Предложен метод сравнения моноинтервальных альтернатив, позволяющий попарно сопоставлять по эффективности альтернативы с произвольными распределениями рисков на интервальных оценках показателей их качества. Применение метода продемонстрировано на примерах. Даны рекомендации по практическому использованию метода.
Идентификаторы и классификаторы
Принятие решений в условиях неопределенности - сложившаяся и разветвленная область исследований со многими самостоятельными направлениями. Среди прочих здесь можно выделить теории нечеткости и возможностей, гранулированные вычисления, подход грубых множеств, теорию НЕ-факторов, теорию свидетельств, подход мягких множеств, теорию мультимножеств и подход обобщенных интервальных оценок.
Список литературы
1. Виленский П., Лифшиц В., Смоляк С. Оценка эффективности инвестиционных проектов. М.: ПолиПринт Сервис. 2015.
2. Zadeh L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic“ //Fuzzy Sets and Systems 90: 1997. Р.111-117. EDN: AIEOET
3. Shepelev G. Decision-making in groups of interval alternatives // International journal “Information theories and applications”. 2016. 23(4). P. 303-320. EDN: WLMFXB
4. Дилигенский Н.В., Дымова Л.Г., Севастьянов П.В. Нечеткое моделирование и многокритериальная оптимизация производственных систем в условиях неопределенности: технология, экономика, экология. М.: Машиностроение. 2004. 397 c. EDN: QJOTDN
5. Шепелев Г.И. Сравнение поли интервальных альтернатив: метод оценки коллективного риска // Искусственный интеллект и принятие решений. 2019. №3. С.3-11. EDN: YNEBUM
6. Недосекин А.О. Нечетко-множественный анализ риска финансовых инвестиций. С-Пб: Сезам. 2002. 181 с.
7. Fishburn P.C. Mean-risk analysis with risk associated with below-target returns // American Economic Review. 1977. 67(1) P. 116-126.
8. Вощинин А. Интервальный анализ данных // Заводская лаборатория. 2002. Т. 68. № 1. С.118-126.
9. Вощинин А., Сотиров Г. Оптимизация в условиях неопределенности. Tekhnika, PRB. 1989.
10. Вощинин А., Бочков А., Сотиров Г. Метода анализа данных при интервальной нестатистической ошибке. 1990. Т. 56. № 7. С. 76-81.
11. Шахнов И. Экспресс-анализ упорядоченности интервальных величин // Автоматика и телемеханика. 2004. № 10. С. 67-84. EDN: NQTXWV
12. Shepelev G., Khairova N. Collective risk estimating method for comparing poly-interval objects in intelligent systems // COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems. CEUR Workshop Proceedings. 2021. Vol. 1-2870. P. 866-876. EDN: PBKMES
13. Жиянов В.И., Шепелев Г.И. Комплексный метод сравнения интервальных альтернатив в условиях риска // Вестник ЦЭМИ РАН. 2018. №3 [Electronic resource].
Выпуск
Другие статьи выпуска
Рассмотрены основные проблемы, связанные с оперативным выявлением очагов лесных пожаров и сопровождающих их задымлений на основе применения автономных беспилотных летательных аппаратов. Разработан метод поиска лесных пожаров по локально-оптимальному маршруту полета в условиях неопределенности. Сформулирован ряд оригинальных положений математического аппарата нечетких множеств, позволяющих сформировать для автономного беспилотного летательного аппарата эффективную информационно-аналитическую модель ситуационно-командного управления движением по строящемуся в реальном времени маршруту полета. Создана модель представления и обработки знаний, обеспечивающая на ее основе возможность автоматического синтеза логико-трансформационных правил вывода ситуационно-командного управления движением летательного аппарата. Показано, что предложенный принцип построения информационно-аналитической модели позволяет снизить сложность решения задачи выбора эффективных команд за счет существенного сокращения количества сравнений текущей проблемной ситуации на объекте с эталонными проблемными ситуациями в процессе вывода решений.
Современные роботы позволяют решать широкий спектр задач при совместной деятельности с человеком. При этом робот может получать команды от человека через различные системы управления, а также с помощью естественного языка. Выражения на естественном языке обладают значительной многозначностью (омонимией). В статье показано, какими методами обрабатываются высказывания и решается возникающая омонимия при речевом управлении роботом в естественной или виртуальной среде.
В статье изложены принципы разработанного алгоритма выявления трендов на основе анализа больших текстовых данных и представления результата в удобных для лиц принимающих решения (ЛПР) форматах, реализованных в системе интеллектуального анализа больших данных iFORA. Дается обзор существующих алгоритмов текстовой аналитики. Излагается предлагаемая и апробированная на десятках реализованных проектов математическая основа для выявления терминов, означающих тренды. Описываются подходы к кластеризации терминов на основе их векторов в пространстве Word2vec. Приводятся примеры двух ключевых визуализаций (семантические, тренд-карты), дающих представление о круге тем и трендах, характеризующих конкретную исследуемую область, как способ адаптации результатов анализа к задачам ЛПР. Обсуждаются ограничения и преимущества использования предложенного подхода для поддержки принятия решений, предлагаются направления для будущих исследований.
. В статье представлены результаты разработки и исследования методов для создания 3D-моделей растений, выращиваемых в условиях in vitro. В комплексе они решают проблемы, возникающие в процессе исследований растений в пробирке, связанные со сложностью структуры растения, возникновением искажений на границах пробирки, ее возможным запотеванием, а также влиянием человеческого фактора. Создан банк из 792 единиц 3D-моделей для растений шести видов, позволяющий проводить имитационные эксперименты для выявления причинно-следственных связей, осуществления прогнозирования и получения новых знаний. Проведена проверка разработанных методов на адекватность. Представлены примеры их использования для конкретного растения.
Многие современные средcтва Машинного обучения (МО) работают недостаточно эффективно, ввиду выраженной нелинейности изменения трафика и нестационарности. В этих условиях выделяется задача прогнозирования признаков приращений (направления изменения) процесса временных рядов. В статье предлагается использовать некоторые результаты теории случайных процессов для быстрой оценки предсказуемости знаков приращений с приемлемой точностью. Предлагаемая процедура представляет собой простое эвристическое правило предсказания приращения двух соседних значений случайной последовательности. Показывается связь данного подхода для временных рядов с известными подходами предсказания двоичных последовательностей. Рассматривается возможность использования опыта прогнозирования абсолютных значений трафика при прогнозировании знака изменения.
В статье представлена облачная платформа IACPaaS, предназначенная для создания интеллектуальных сервисов на основе онтологий, а также концептуальные идеи, лежащие в основе ее разработки. Описаны основные особенности и опыт использования поддерживаемых технологий создания интеллектуальных сервисов различных типов. На платформе реализована развитая инструментальная поддержка разработки всех компонентов интеллектуальных сервисов. Изначально она позиционировалась как среда для создания облачных систем с базами знаний, сейчас же рассматривается как инструментарий разработки программ на основе онтологий, имеющих семантическое представление.
В статье рассмотрены средства концептуального проектирования сложных технических систем. Построена квазиаксиоматическая теория, формализующая процедуры порождения смысла для естественно-языкового описания процесса создания нового технического решения. Введены семантические категории, структуры универсальных множеств, операции сравнения элементов универсума. Описаны типы соединения элементарных подсистем. Предложена формализация процедуры многоуровневого синтеза технической системы с использованием порождающей грамматики над нечеткими структурами. Приведен пример проектирования технического устройства.
Описываются методы решения антагонистической игры в условиях нарушения принципов «общих знаний», когда игроки демонстрируют неполные методы возможных решений и соответствующую значимость противоположной стороны. В качестве формальной игровой модели предлагается использовать нечетко-множественные представления оценок возможностей использования игроками их стратегий и соответствующих последствий. Решение задачи основано на преобразовании нечетких оценок возможных результатов решений для каждой ситуации в форму эквивалентного нечеткого количества с треугольной регулируемой аппаратурой. Разработанный метод не накладывает ограничений на вид исходных нечетных данных. Помимо выбора наилучшего решения, повышается его результат и возможности реализации.
Рассматривается задача многокритериального выбора в случае, когда предпочтения лица, принимающего решение (ЛПР), задаются нечетким бинарным отношением второго порядка. Описывается математическое обоснование алгоритма сужения множества Парето на основе нечетких квантов информации о предпочтениях ЛПР. Обсуждаются вопросы оптимизации алгоритма в важных для приложений случаях.
Рассматривается задача многокритериального выбора с числовой векторной функцией на подмножестве векторного пространства в предположении, что ЛПР в процессе выбора использует нечеткое отношение предпочтения. Считается известной информация об этом отношении в виде конечного набора нечетких квантов. Формулируется алгоритм, который за счет этой информации позволяет сузить множество Парето в задаче многокритериального выбора и, тем самым, облегчить окончательный выбор. Работа алгоритма иллюстрируется числовым примером.
Издательство
- Издательство
- ИУ РАН
- Регион
- Россия, Москва
- Почтовый адрес
- 119333, Москва, Вавилова, д.44, кор.2
- Юр. адрес
- 119333, Москва, Вавилова, д.44, кор.2
- ФИО
- Соколов Игорь Анатольевич (Директор)
- E-mail адрес
- frccsc@frccsc.ru
- Контактный телефон
- +7 (499) 1356274