Архив статей журнала
В статье исследован метод определения вектора движения по гиперплоскостям, ограничивающим допустимый многогранник многомерной задачи линейного программирования на основе визуальных образов, подаваемых на вход нейронной сети прямого распространения. Алгоритм визуализации строит в окрестности точки, расположенной на ограничивающей гиперплоскости, рецептивное поле. Для каждой точки рецептивного поля вычисляется скалярное смещение до поверхности гиперплоскости. На основании вычисленного смещения каждой точке рецептивного поля присваивается скалярная величина. Полученный визуальный образ подается на вход нейронной сети прямого распространения, которая вычисляет на ограничивающей гиперплоскости направление максимального увеличения целевой функции. В статье предложена усовершенствованная форма крестообразного рецептивного поля. Описано построение обучающего множества на основе случайно сгенерированных ограничивающих гиперплоскостей и целевых функций в многомерных пространствах. Разработана масштабируемая архитектура нейронной сети с изменяемым числом скрытых слоев. Произведен подбор гиперпараметров нейронной сети. В вычислительных экспериментах подтверждена высокая (более 98%) точность работы крестообразного рецептивного поля. Исследована зависимость точности результатов нейронной сети от числа скрытых слоев и продолжительности обучения.
Оценка производительности добычи полезных ресурсов, в том числе определение геометрических размеров объектов горной породы в открытом карьере, является одной из наиболее важных задач в горнодобывающей промышленности. Задача фрагментации горных пород решается с помощью методов компьютерного зрения, таких как экземплярная сегментация или семантическая сегментация. В настоящее время для решения таких задач для цифровых изображений используются нейронные сети глубокого обучения. Нейронные сети требуют больших вычислительных мощностей для обработки цифровых изображений высокого разрешения и больших наборов данных. Для решения этой проблемы в литературе предлагается использование облегченных архитектур нейронных сетей, а также методов оптимизации производительности, таких как параллельные вычисления с помощью центральных, графических и специализированных процессоров. В обзоре рассматриваются последние достижения в области нейронных сетей глубокого обучения для решения задач компьютерного зрения применительно к фрагментации горных пород и вопросы повышения производительности реализаций нейронных сетей на различных параллельных архитектурах.
Основной предмет статьи - рассмотрение задач, возникающих при исследовании необходимых условий равенства бесконечных итераций конечных языков. В предыдущих публикациях автором рассматривались примеры применения соответствующего этому равенству специального бинарного отношения эквивалентности на множестве конечных языков, причем рассматривались как примеры, описывающие необходимые условия его выполнения, так и примеры его использования. К одному из таких необходимых условий применены два варианта сведeния рассматриваемой задачи: к конечным автоматам и к бесконечным итерационным деревьям. Также в статье приведены несколько вариантов важной гипотезы, формулируемой для множества конечных языков; ее исследование дает и иные варианты сведeния рассматриваемой задачи к специальным задачам для недетерминированных конечных автоматов. При этом в случае выполнения сформулированной гипотезы некоторые из таких задач решаются за полиномиальное время, а некоторые не решаются; при продолжении работ по данной тематике последний факт может дать возможность переформулировки проблемы P = NP в виде специальной задачи теории формальных языков.
В статье рассмотрена задача поиска аномальных подпоследовательностей временного ряда, решение которой в настоящее время востребовано в широком спектре предметных областей. Предложен новый метод обнаружения аномальных подпоследовательностей временного ряда с частичным привлечением учителя. Метод базируется на концепциях диссонанса и сниппета, которые формализуют соответственно понятия аномальных и типичных подпоследовательностей временного ряда. Предложенный метод включает в себя нейросетевую модель, которая определяет степень аномальности входной подпоследовательности ряда, и алгоритм автоматизированного построения обучающей выборки для этой модели. Нейросетевая модель представляет собой сиамскую нейронную сеть, где в качестве подсети предложено использовать модификацию модели ResNet. Для обучения модели предложена модифицированная функция контрастных потерь. Формирование обучающей выборки выполняется на основе репрезентативного фрагмента ряда, из которого удаляются диссонансы, маломощные сниппеты со своими ближайшими соседями и выбросы в рамках каждого сниппета, трактуемые соответственно как аномальная, нетипичная деятельность субъекта и шумы. Вычислительные эксперименты на временных рядах из различных предметных областей показывают, что предложенная модель по сравнению с аналогами показывает в среднем наиболее высокую точность обнаружения аномалий по стандартной метрике VUS-PR. Обратной стороной высокой точности метода является большее по сравнению с аналогами время, которое затрачивается на обучение модели и распознавание аномалии. Тем не менее, в приложениях интеллектуального управления отоплением зданий метод обеспечивает быстродействие, достаточное для обнаружения аномальных подпоследовательностей в режиме реального времени.
Проектировать эффективные параллельные программы для многопроцессорных архитектур сложно, так как нет четких формальных правил, которых необходимо придерживаться. Для решения этой проблемы при реализации численных алгоритмов может применяться концепция Q-детерминанта. Данная теория позволяет проводить автоматизированный анализ ресурса параллелизма алгоритма, автоматизированное сравнение ресурсов параллелизма алгоритмов, решающих одну и ту же алгоритмическую проблему, проектировать эффективные программы для реализации алгоритмов с помощью специально разработанного метода проектирования, повысить эффективность реализации численных методов и алгоритмических проблем. Результаты, полученные на основе концепции Q-детерминанта, представляют собой один из вариантов решения проблемы эффективной реализации численных алгоритмов, методов и алгоритмических проблем на параллельных вычислительных системах. Однако пока остается не решенной фундаментальная проблема автоматизированного проектирования и исполнения для любого численного алгоритма программы, реализующей алгоритм эффективно. В статье описана разработка единой для численных алгоритмов программной системы проектирования и исполнения Q-эффективных программ - эффективных программ, спроектированных с помощью концепции Q-детерминанта. Система предназначена для использования на параллельных вычислительных системах с общей памятью. Она состоит из компилятора и виртуальной машины. Компилятор преобразует представление алгоритма в форме Q-детерминанта в исполняемую программу, использующую ресурс параллелизма алгоритма полностью. Виртуальная машина исполняет программу, полученную с помощью компилятора. В статье также приведено экспериментальное исследование созданной программной системы с применением суперкомпьютера «Торнадо ЮУрГУ».
В медицинской практике первичную диагностику заболеваний следует проводить быстро и по возможности автоматически. Обработка многомодальных данных в медицине стала повсеместно распространеннымметодом классификации, прогнозирования и обнаружения заболеваний. Пневмония - одно из наиболее распространенных заболеваний легких. В нашем исследовании для выявления пневмонии мы использовалирентгенограммы органов грудной клетки в качестве первой модальности и результаты лабораторных исследований пациента в качестве второй модальности. Архитектура многомодальной модели глубокого обучениябыла основана на промежуточном слиянии. Модель обучалась на сбалансированных и несбалансированныхданных, когда наличие пневмонии определялось в 50% и 9% от общего числа случаев соответственно. Дляболее объективной оценки результатов мы сравнили производительность нашей модели с несколькими другими моделями с открытым исходным кодом на наших данных. Эксперименты демонстрируют высокуюэффективность предложенной модели выявления пневмонии по двум модальностям даже в случаях несбалансированных классов (до 96.6%) по сравнению с результатами одномодальных моделей (до 93.5%). Мысделали несколько интегральных оценок производительности предлагаемой модели, чтобы охватить и исследовать все аспекты многомодальных данных и особенностей архитектуры. Были показатели точности,ROC AUC, PR AUC, показателя F1 и коэффициента корреляции Мэтьюса. Используя различные метрики, мы доказали возможность и целесообразность использования предложенной модели с целью правильнойклассификации заболевания. Эксперименты показали, что производительность модели, обученной на несбалансированных данных, даже немного выше, чем у других рассмотренных моделей.
В работе рассматривается решение многомерных задач многоэкстремальной оптимизации с использованием деревьев решений для выявления областей притяжения локальных минимумов. Целевая функцияпредставлена как «черный ящик», она может быть недифференцируемой, многоэкстремальной и вычислительно трудоемкой. Для функции предполагается, что она удовлетворяет условию Липшица с априоринеизвестной константой. Для решения поставленной задачи многоэкстремальной оптимизации применятсяалгоритм глобального поиска. Хорошо известно, что сложность решения существенно зависит от наличия нескольких локальных экстремумов. В данной работе предложена модификация алгоритма, в которойопределяются окрестности локальных минимумов целевой функции на основе анализа накопленной поисковой информации. Проведение такого анализа с использованием методов машинного обучения позволяетпринять решение о запуске локального метода, что может ускорить сходимость алгоритма. Данный подход был подтвержден результатами численных экспериментов, демонстрирующих ускорение при решениинабора тестовых задач.
Статья является продолжением собственных предыдущих исследований автора в рамках многолетней работы по созданию учебного языка программирования СИНХРО, предназначенного для ознакомления с параллелизмом. Основное направление работ - уточнение понятий, способствующих подготовке небольших многопоточных программ при обучении параллельному программированию. Главный результат последнего года заключается в развитии механизма взаимодействия локальной и общей памяти. Дан приоритет парадигме функционального программирования, популярной при подготовке прототипов многопоточных программ. Это помогло преодолеть зависимость порядка вычислений от последовательности вхождения выражений в текст программы и размещения данных в памяти. Описаны отличия от привычных понятий программирования, сдерживающих решение задач организации параллельных вычислений и предельно распределенных систем из ряда потоков, взаимодействующих в терминах доступа к значениям переменных, возможно расположенных в общей памяти. Повышен базовый уровень воздействий на память. Часть из них укрупнены для предотвращения неожиданностей из-за асинхронности и ослабления императивности элементов распределенных систем. Добавлено понятие команд-двойников для управления императивной синхронизацией взаимодействующих устройств, полезное при решении вопросов освобождения памяти.
В статье описана параллельно-конвейерная реализация решения сеточных уравнений модифицированным попеременно-треугольным итерационным методом (МПТМ), получаемых при численном решенииуравнений математической физики. Наибольшие вычислительные затраты при использовании указанного метода приходятся на этапы решения системы линейных алгебраических уравнений (СЛАУ) с нижнетреугольной и верхнетреугольной матрицами. Представлен алгоритм решения СЛАУ с нижнетреугольной матрицей на графическом ускорителе с использованием технологии NVIDIA CUDA. Для реализациипараллельно-конвейерного метода использовалась трехмерная декомпозиция расчетной области. Она делится по координате y на блоки, количество которых соответствует количеству потоковых мультипроцессоровGPU, задействованных в вычислениях. В свою очередь, блоки разделяются на фрагменты по двум пространственным координатам - x и z. Представленная графовая модель описывает взаимосвязь между соседнимифрагментами расчетной сетки и процессом конвейерного расчета. По результатам проведенных вычислительных экспериментов получена регрессионная модель, описывающая зависимость времени расчета одногошага МПТМ на GPU, вычислены ускорение и эффективность расчетов СЛАУ с нижнетреугольной матрицей параллельно-конвейерным методом на GPU при задействовании различного количества потоковыхмультипроцессоров.
Проблема повышения эффективности параллельных вычислений чрезвычайно актуальна. В статье впервые продемонстрировано применение концепции Q-детерминанта для эффективной реализации алгоритма на графах. Концепция Q-детерминанта основана на унифицированном представлении численных алгоритмов в форме Q-детерминанта. Q-детерминант позволяет выразить и оценить внутренний параллелизм алгоритма, а также показать способ его параллельного исполнения. В работе приведены основные понятия концепции Q-детерминанта, необходимые для понимания приведенного исследования. Также описан основанный на концепции Q-детерминанта метод проектирования эффективных программ для численных алгоритмов. Результатом применения метода является программа, полностью использующая ресурс параллелизма алгоритма. Такая программа называется Q-эффективной. В качестве первого применения метода проектирования Q-эффективных программ для алгоритмов на графах описано проектирование программ для реализации алгоритма Дейкстры на параллельных вычислительных системах с общей и распределенной памятью. Приведены также результаты экспериментального исследования разработанных программ, проведенного с помощью суперкомпьютера «Торнадо ЮУрГУ». На основе анализа результатов экспериментального исследования определяются динамические характеристики разработанных программ и выявляются особенности их выполнения. Проведенные в статье исследования дают возможность сделать вывод, что применение концепции Q-детерминанта с целью разработки эффективных программ возможно не только для численных алгоритмов, но и для алгоритмов на графах.
В статье представлены результаты исследований по поиску аномалий в сенсорных данных из различных приложений цифровой индустрии. Рассматриваются временные ряды, полученные при эксплуатации деталей машин, показания датчиков, установленных на металлургическом оборудовании, и показания температурных датчиков в системе умного управления отоплением зданий. Аномалии, найденные в таких данных, свидетельствуют о нештатной ситуации, отказах, сбоях и износе технологического оборудования. Аномалия формализуется как диапазонный диссонанс - подпоследовательность временного ряда, расстояние от которой до ее ближайшего соседа не менее наперед заданного аналитиком порога. Ближайшим соседом данной подпоследовательности является такая подпоследовательность ряда, которая не пересекается с данной и имеет минимальное расстояние до нее. Поиск диссонансов выполняется с помощью параллельного алгоритма для графического процессора, ранее разработанного автором данной статьи. Для визуализации найденных аномалий предложены метод построения тепловой карты диссонансов, имеющих различные длины, и алгоритм нахождения в построенной тепловой карте наиболее значимых диссонансов независимо от их длин.
В статье представлена новая версия масштабируемого итерационного метода линейного программирования, получившего название «апекс-метод». Ключевой особенностью этого метода является построение пути, близкого к оптимальному, на поверхности допустимой области от определенной начальной точки до точного решения задачи линейного программирования. Оптимальный путь - это путь движения по поверхности многогранника в направлении максимального увеличения или уменьшения значения целевой функции в зависимости от того, ee максимум или минимум необходимо найти. Апекс-метод основан на схеме предиктор-корректор и состоит из двух стадий: Quest (предиктор) и Target (корректор). На стадии Quest вычисляется грубое начальное приближение задачи линейного программирования. Основываясь на этом начальном приближении, на стадии Target вычисляется решение задачи линейного программирования с заданной точностью. Основная операция, используемая в апекс-методе, - это операция, которая вычисляет псевдопроекцию, являющуюся обобщением метрической проекции на выпуклое замкнутое множество. Псевдопроекция используется как на стадии Quest, так и на стадии Target. Представлен параллельный алгоритм, использующий фейеровское отображение для вычисления псевдопроекции. Получена аналитическая оценка ресурса параллелизма для этого алгоритма. Также приведен алгоритм, реализующий стадию Target, и доказана его сходимость. Описаны вычислительные эксперименты на кластерной вычислительной системе по применению апекс-метода для решения различных задач линейного программирования.