Автоматическая генерация контрольных работ для студентов является актуальной задачей при организации образовательного процесса. В настоящей работе описывается опыт генерации контрольных работ по математической статистике с помощью языка программирования Python. Рассмотрены как методические аспекты составления задач, так и вопросы практической реализации. Приведенные в качестве примеров задачи на построение доверительных интервалов и проверку гипотез для выборок из нормального распределения в обязательном порядке входят в курс статистики.
Идентификаторы и классификаторы
Для выбора из нескольких вариантов, например, в случае уровня доверия, мы пользуемся функцией random.сhoice: gamma = np.random.сhoice(0.9, 0.95, 0.99). Таким способом мы выбираем вероятность ошибки первого рода и параметр разности средних δ . Кроме того, нам требуются переменные, отвечающие за то, будет ли известен второй параметр в задаче на доверительные интервалы и будет ли альтернативное среднее меньше или больше основного в задаче на проверку гипотез: их мы задаем равными 0 или 1 также с помощью random.сhoice или random.randint
Список литературы
-
Гмурман В. Е. Теория вероятностей и математическая статистика: учеб. 12-е изд. М.: Юрайт, 2024. 479 с. ISBN: 978-5-534-00859-3
-
Ветров Л. Г., Кузнецова А. А., Сунчалина А. Л. Прикладная статистика: метод. указания к выполнению лаб. работ. М.: Изд-во МГТУ им. Н. Э. Баумана, 2017. 48 с. ISBN: 978-5-7038-4641-4
-
Коновалов Я. Ю., Соболев С. К. Генератор контрольных заданий по высшей математике: опыт создания и применения // Инженерный вестник. 2015. № 4. С. 12. EDN: TVWZPR
-
Коновалов Я. Ю., Соболев С. К., Ермолаева М. А. Методические аспекты автоматической генерации задач по линейной алгебре // Инженерный журнал: наука и инновации. 2013. № 5 (17). С. 8. EDN: RHAKUF
-
Коновалов Я. Ю., Соболев С. К. Методические аспекты компьютерного генерирования заданий по математике // Наука и Образование: науч. издание МГТУ им. Н. Э. Баумана. 2016. № 7. С. 285-295. EDN: XEJZOJ
-
Кузнецова А. А. Применение инструментов Python в курсе статистики. // Актуальные проблемы преподавания математики в техническом вузе. 2023. №. 10. С. 64-69. DOI: 10.25206/2307-5430-2023-10-64-68 EDN: YMHJCK
Выпуск
Другие статьи выпуска
Современная геополитическая обстановка настоятельно требует повышения уровня физико-математической подготовки российских инженеров. В частности, фундаментальная физико-математическая подготовка отечественных инженеров является основой для достижения технологической независимости нашей страны. В данной статье в качестве инструмента такого повышения качества физико-математической подготовки предложен концепт интегрального курса математики, который следует читать в течение одного семестра на завершающем году обучения в техническом вузе. Концепт пояснён на примере конкретной математической задачи. Также указаны направления дальнейшей детализации для предложенного концепта.
Работа посвящена проблеме использования математического аппарата студентами технических вузов, изучающих такие специальные курсы, как «Уравнения математической физики», «Специальные главы физики», «Электродинамика», в рамках которых рассматриваются технико-технологические физические явления. Отмечается невысокий уровень остаточных знаний по математике обучающихся к моменту начала изучения спецкурсов: студенты недостаточно владеют методами и приемами математических операций, а также соответствующим понятийным аппаратом. Для эффективности усвоения математических понятий, предлагается раскрывать их суть на 1-2 курсах при изучении физики на доступных и простых примерах, контролируя освоение материала через тестирование в ELearning в рамках самостоятельной работы.
Анализ результатов входного, тематического и итогового тестирования регулярно проводится для контроля уровня подготовленности абитуриентов и студентов. Оценка уровня остаточных знаний по элементарной математике студентов первого курса позволяет выдвигать обоснованные предложения по совершенствованию и оптимизации школьного курса математики. Краткий статистический анализ итогов входного тестирования по математике в период 2009-2020 гг. выявляет неожиданные закономерности и предлагает новые задачи развития системы тестирования.
Математические олимпиады способствуют развитию творческого мышления студентов, умению выбирать эффективные способы решения нестандартных задач, прививают навыки индивидуальной работы с использованием базовых знаний, умений, тем самым готовя студентов к научно-исследовательской работе. В работе изложен опыт проведения ежегодной региональной математической олимпиады среди студентов вузов Омской области (2018-2023 гг.). Рассмотрены вопросы организации и проведения олимпиады, подведения итогов олимпиады.
Олимпиадная деятельность студентов является одним из видов внеаудиторной работы, которая позволяет результативно развивать логическое мышление, исследовательские навыки и компетенции, связанные с нестандартным подходом к решению поставленной задачи. Отсюда очевидно, что необходимо вовлечение студентов в олимпиадное движение во всех его формах. В статье изложен опыт проведения Открытых межвузовских студенческих олимпиад по теории вероятностей, организатором которой является кафедра высшей математики Сибирского государственного университета телекоммуникаций и информатики (СибГУТИ). Семилетний опыт показывает, что данные олимпиады способствуют популяризации предмета «Теория вероятностей», углублению знаний студентов по данной дисциплине, развитию креативного и нестандартного мышления.
Анализ последних результатов входного тестирования первокурсников показывает, что уверенный рост показателей, наблюдавшийся в 2014-2020 гг., сменился заметным спадом, причины которого могут иметь различные объяснения: отдалённое влияние дистанционного обучения во время пандемии, изменения правил приёма в вузы, существенная трансформация системы среднего образования в предшествующие годы. Рассматривается изменение структуры показателей готовности к обучению в вузе, определяются наиболее проблемные разделы элементарной математики. Выявлено снижение доли заданий по тригонометрии в общем балле за тест.
В статье обсуждаются особенности использования пакета математических символьных вычислений Maple при изучении групп подстановок - важных объектов курсов «Дискретная математика», «Алгебра» и «Алгебра и геометрия». В работе демонстрируется методика применения подпакета «Теория групп» для нахождения фрагмента решетки подгрупп группы подстановок. Одновременно рассматривается вопросы нахождения нормализатора подгруппы и нормального замыкания и их расположение в решётке подгрупп. Подгруппы, участвующие в эксперименте, задаются случайными порождающими элементами, и поэтому изучающий курс может сам многократно проводить такие компьютерно-групповые опыты, просто возвращаясь к началу программы.
Предложен ряд задач на вычисление пределов рекуррентных числовых последовательностей, требующих применения нестандартных методов решения и направленных на развитие у студентов навыков решения сложных задач по теме «Пределы последовательностей». Такие задачи могут быть предложены наиболее сильным студентам, в том числе и при подготовке к студенческим математическим олимпиадам. Уровень сложности предлагаемых задач можно понижать до желаемого, видоизменяя формулировку и давая указания к решению задачи. Полученные асимптотики позволяют лучше представлять себе поведение рекуррентной последовательности при больших значениях n.
Полное исследование функции и построение ее графика является важной задачей в курсе математического анализа. Однако доступность компьютерных программ для вычисления производных и построения графиков обесценивает ее важность в глазах студентов. В результате материал усваивается поверхностно, плохо формируется навык анализа свойств функции и интерпретации графика функции. В работе предложены задачи, для решения которых студенту необходимо разобраться в изучаемых понятиях в теории и на практике, описаны варианты заданий, которые нельзя решить с помощью стандартных программ.
Рассмотрен поиск баланса обобщающей математизации и прикладной специализации на примере преподавания теории вероятностей и теории надежности. Поскольку теория вероятностей и ее приложения служат средствами решения конкретных инженерных задач, наиболее продуктивный подход к обучению - идти от типовых задач, встречающихся на практике. Эффективен также исторический подход к изложению методов решения практических задач с акцентом на то, когда и как перед людьми возникали те или иные задачи и какие математические методы решения они вызывали к жизни. Общая концепция построения учебного курса предполагает индивидуальный подбор задач преподавателем.
Издательство
- Издательство
- ОмГТУ
- Регион
- Россия, Омск
- Почтовый адрес
- 644050, Российская Федерация, г. Омск, пр-т Мира, д. 11
- Юр. адрес
- 644050, Российская Федерация, г. Омск, пр-т Мира, д. 11
- ФИО
- Корчагин Павел Александрович (Ректор )
- E-mail адрес
- info@omgtu.ru
- Контактный телефон
- +7 (381) 2653407
- Сайт
- https://omgtu.ru/