SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Объекты могут быть разной природы: геометрические тела, молекулы, дифференциальные уравнения, функции и т.п. Главное, чтобы они не менялись при каких-либо преобразованиях. Преобразования бывают дискретными или непрерывными. Если преобразования дискретные и их конечное число, группа называется конечной. Количество элементов в конечной группе G называется порядком группы и обозначается |G|.
Группа симметрии молекулы состоит из конечного числа геометрических преобразований, под действием которых молекула переходит сама в себя. Все такие преобразования (элементы симметрии) оставляют на месте по крайней мере одну точку, поэтому такие группы называют точечными.
Мы не будем обсуждать степень гладкости функции F, полагая её дифференцируемой столько раз, сколько нам потребуется. Порядком уравнения называется порядок m старшей производной, входящей в (1.1).
Если линейная комбинация двух решений снова является решением, уравнение называют линейным. Линейное уравнение можно записать в виде L̂u = b(x), где линейный оператор равен сумме.
Книга предназначена для научных работников и студентов, интересующихся современными методами исследования сложных систем, описываемых алгебраическими и дифференциальными уравнениями.
В издании изложен синтетический метод, объединяющий возможности теории групп и асимптотического анализа. На основе этого метода получены асимптотически обоснованные динамические уравнения теории пластин и оболочек. Решен ряд задач об излучении нестационарных волновых процессов в пластинах и оболочках.
Пусть в пространстве E2 задана некоторая функция u(x, y), имеющая частные производные второго порядка (причем uxy = uyx). Тогда общим уравнением в частных производных называется уравнение: F (x, y, u, ux, uy , uyy , uxx, uxy ) = 0, где F – некоторая функция. Его частным случаем является так называемое квазилинейное уравнение: a11(x, y, u, ux, uy )uxx + 2a12(x, y, u, ux, uy )uxy + a22(x, y, u, ux, uy )uyy + F1(x, y, u, ux, uy ) = 0.
Нас будут интересовать уравнения, линейные относительно старших производных, то есть, когда функции a11, a12, a22 зависят только от переменных x, y: a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)uyy + F (x, y, u, ux, uy ) = 0. Уравнение называется линейным, если оно линейно как относительно старших производных uxx, uyy , uxy , так и относительно функции u и ее первых производных: a11uxx + 2a12uxy + a22uyy + b1ux + b2uy + cu + f = 0, (1.1) где a11, a12, a22, b1, b2, c, f – функции только от x и y.
В статье Л. Хёрмандера изложен ряд глубоких и актуальных результатов в теории линейных уравнений с частными производными. В ней широко используются методы функционального анализа и, в частности, теории обобщённых функций.
Эта работа будет интересна прежде всего математикам — студентам старших курсов, аспирантам и научным работникам, — а также всем тем, кто имеет дело с теорией уравнений с частными производными. Написана статья очень доступно.
Содержание учебника направлено на формирование у учащихся функциональной грамотности и коммуникативной компетентности. Система заданий обеспечивает достижение личностных, предметных и метапредметных результатов освоения основной образовательной программы начального общего образования. Учебник переработан в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования.
Излагаются основы нового подхода к исследованию симметрии уравнений математической и теоретической физики. Систематически изучаются симметрийные свойства основных уравнений движения релятивистской и нерелятивистской квантовой физики, описывается как классическая симметрия этих уравнений, так и новые операторы симметрии и интегралы движения.
Исследуются релятивистские и галилеевски инвариантные уравнения движения частицы произвольного спина во внешнем электромагнитном поле, получены точные решения ряда задач о движении таких частиц в полях специальных конфигураций.
Подробно излагается теория представлений групп Галилея и Пуанкаре, а также обобщенных групп Пуанкаре P(1,n), рассматриваются различные физические приложения этих представлений.
Для научных работников в области математики и физики, а также аспирантов и студентов старших курсов соответствующих специальностей.
Книга посвящена общей теории дифференциальных уравнений в частных производных с постоянными коэффициентами. Главное внимание уделяется локальным свойствам решений, построению и исследованию различных фундаментальных решений, а также разрешимости «в целом».
Дано обстоятельное введение в широкий круг современных исследований, в большой степени интересных не только для математиков. Изложение в основном доступно студентам средних курсов физико-математических факультетов.
Третье издание курса «Уравнения математической физики» мало отличается от второго, подвергшегося серьёзной переработке. Уже при втором издании была исключена лекция, посвящённая методу Ритца, как стоящая несколько особняком от остального курса. Некоторые упрощения были внесены в теорию кратных интегралов Лебега и в теорию интегральных уравнений. Более точно было проведено обоснование метода Фурье.
Как во втором, так и в третьем издании были произведены отдельные улучшения стиля, исправлены неудачные формулировки.
Кроме того, редактором книги В. С. Рябеньким в третьем издании более подробно развита лекция о зависимости решений уравнений математической физики от дополнительных условий.
Автор выражает свою благодарность за ценные замечания, сделанные при втором и третьем изданиях различными лицами. Особенно ценные замечания были сделаны В. И. Смирновым и редактором третьего издания В. С. Рябеньким.
Книга посвящена теории дифференциальных уравнений с частными производными смешанного типа. Автор вводит читателя в современное состояние математических задач, тесно связанных с задачами трансзвуковой газовой динамики.
В книге рассмотрены основные краевые задачи: задача Трикоми, обобщенная задача Трикоми для уравнения Чаплыгина, задача Франкля и видоизмененная задача Трикоми.