SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Исследования, направленные на снижение весовых показателей машин при одновременном повышении их надежности, в последнее время стали особенно актуальны.
Практическое решение задачи осуществляется путем рационального применения новых прочных и сверхпрочных материалов и совершенствования методов расчета и оптимального конструирования элементов изделий с учетом особенностей поведения материала в реальных условиях.
Основные размеры детали обычно определяются расчетом на прочность. В зависимости от аспекта, в котором исследуется прочность, в это понятие вкладывается различный смысл.
В книге рассмотрены основы общей теории упругих колебаний, возникающих во время работы машин. Теоретические сведения пояснены расчетными примерами. Указаны пути борьбы с вредными колебаниями.
В третье издание (2-е изд. 1967 г.) включен ряд новых вопросов (случайные колебания, колебания аппаратов на воздушной подушке, удар и т. д.).
Книга предназначена для инженерно-технических работников конструкторских бюро и научно-исследовательских институтов. Она может быть полезна также студентам вузов соответствующих специальностей.
Книга посвящена систематическому изложению одного из новейших методов численного анализа — метода конечных элементов — и его приложений к широкому классу нелинейных задач механики сплошных сред и строительной механики.
Понятие конечного элемента служит тем звеном, которое объединяет основы механики сплошных сред и современные методы численного анализа и дает инструмент для получения количественной информации о нелинейных процессах. Хотя основное внимание уделено решению задач механики твердого тела, материал излагается таким образом, что результаты могут быть применены и в ряде других областей, например в физике, таких, как динамика разреженных газов или теория электромагнетизма.
Книга представляет значительный интерес для инженеров-исследователей и научных работников, занимающихся вопросами нелинейной механики и её вычислительными приложениями. Она полезна преподавателям, аспирантам и студентам старших курсов.
Предлагаемое учебное пособие по курсу “Введение в механику сплошных сред” написано по материалам лекций, читавшихся автором в течение ряда лет на механико-математическом факультете НГУ. В нем в сжатой форме приводится математический аппарат, используемый в механике, и описываются принципы построения основных моделей сплошных сред.
В методическом плане данное пособие имеет ряд существенных отличий от имеющихся учебников по данной дисциплине, и поэтому может быть полезным не только студентам соответствующих специальностей, но и лицам, уже знакомым с излагаемым материалом.
Книга посвящена подробному анализу математических основ теории упругости. На современном уровне математической строгости впервые с одинаковой полнотой рассмотрены трехмерные задачи статики, гармонических колебаний и общей динамики линейной теории упругости, термоупругости и моментной упругости.
Методом многомерных сингулярных интегральных уравнений и сингулярных потенциалов, развитым в книге, исследованы общие вопросы теории и получены представления решений в рядах и квадратах, допускающие эффективную реализацию на ЭВМ.
В пособии рассмотрены задачи, связанные с определением напряженного состояния анизотропных пластин с различными отверстиями и ортотропных стержней с продольными полостями. Дано подробное изложение различных методов решения указанных задач.
Приведены графики, наглядно показывающие влияние анизотропии на напряженное состояние рассмотренных сред.
Пособие предназначено для студентов и преподавателей университетов и технических вузов, в которых изучается курс теории упругости, а также для инженеров-конструкторов промышленных предприятий.
Изложены основные методы расчета статически определимых и статически неопределимых стержневых систем на неподвижную и подвижную нагрузки. Наряду с расчетом упругих систем рассмотрен расчет по предельным состояниям в условиях появления пластических шарниров при идеальной пластической диаграмме деформирования. Приведены примеры, иллюстрирующие применение теории расчетов к решению практических задач.
Учебник предназначен для студентов автомобильнодорожных вузов и факультетов, обучающихся по специальностям «Автомобильные дороги», «Мосты и тоннели» и «Строительство аэродромов».
Монография является четвертой книгой из серии «Химические волокна». В ней описаны свойства исходных мономеров производства полиэфирных волокон на основе полиэтилентерефталата и модифицирующих добавок, возможные варианты синтеза полиэтилентерефталата и механизмы протекающих при этом реакций. Подробно рассмотрены структурные особенности полимера и изменения его структуры при формовании полиэфирного волокна. Описаны технологические процессы применяемое оборудование. Приводятся сведения о свойствах и модификации полиэфирных волокон.
Книга предназначена для научных и инженерно-технических работников промышленности химических волокон, а также для специалистов текстильной промышленности. Она может быть полезна аспирантам и студентам химико-технологических вузов.
В книге со всей разумной полнотой и строгостью рассматривается линейная статика тонкой упругой однородной изотропной оболочки. Выводятся общие уравнения теории, обсуждаются возможные приближенные методы их решения, исследуются краевые задачи, возникающие в процессе приближенного расчета оболочек.
Проводится качественное исследование свойств напряжённо-деформированного состояния оболочки в зависимости от условий закрепления её краев и вида кривизны средней поверхности. Большое внимание уделено основам прикладных оболочек, оценке её прочности и обсуждению путей уточнения.
В приложении излагаются некоторые положения теории асимптотического интегрирования дифференциальных уравнений в частных производных, что делает изложенную теорию удобнее всего использовать для расчета оболочек.
В книге прослежены пути формирования французской школы теории функций и множеств на рубеже XIX—XX вв., выявлен вклад представителей этой школы (Борель, Бэр, Лебег и др.) в создание новой научной дисциплины, охарактеризовано воздействие их научных представлений на развитие функционального анализа, топологии, теории вероятностей и других математических наук. Книга представляет интерес для математиков и историков науки.