SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В данной статье мы исследовали динамику систем двух и трех идентичных кубитов, резонансно взаимодействующих с выделенной модой общего теплового поля резонатора без потерь. Нами найдено решение квантового временного уравнения Лиувилля для различных трех- и двухкубитных перепутанных состояний кубитов. На основе указанных решений проведено вычисление критерия перепутанности кубитов - степени совпадения. Результаты численного моделирования степени совпадения показали, что увеличение среднего числа фотонов в моде приводит к уменьшению максимальной степени перепутывания. При этом показано, что двухкубитное перепутанное состояние более устойчиво по отношению к внешнему шуму, нежели трехкубитные перепутанные состояния Гринбергера - Хорна - Цайлингера (GHZ). При этом истинно перепутанное GHZ-состояние более устойчиво к шуму, чем GHZ-подобное перепутанное состояние.
Статья посвящена памяти доктора физико-математических наук, профессора, заслуженного деятеля науки РФ Владимира Ивановича Астафьева, профессиональная деятельность которого более 35 лет связана с Самарским университетом. Научная, педагогическая и организаторская деятельность В.И. Астафьева во многом определяла и будет определять образовательную деятельность и научные направления, развиваемые на механико-математическом факультете. Его безграничная преданность университету, широкое и глубокое образование, высокая математическая культура позволили В.И. Астафьеву воспитать целую плеяду ученых и профессоров, работающих сейчас в университете.
В статье предложена и реализована процедура восстановления асимптотического разложении полей напряжений, деформаций и перемещений в анизотропных материалах, обобщающих решение Уильямса для линейно упругих изотропных материалов, на основании конечно-элементного решения задачи о деформировании образца с дефектом в анизотропном ортотропном материале в приближении плоской задачи теории упругости. Коэффициенты разложения поля напряжений вблизи вершины трещины в анизотропном материале определяются с помощью переопределенного метода, предложенного изначально для восстановления асимптотического разложения из экспериментальных данных фотоупругого исследования. В настоящей работе данный метод распространен на анизотропные материалы с различными видами симметрии, и новизна предлагаемого подхода заключается в реконструкции асимптотического разложения из конечно-элементного решения для компонент тензора напряжений в узлах конечно-элементной сетки, что позволяет не исключать их поля перемещений составляющие, отвечающие перемещениям тела как абсолютно твердого тела. В предлагаемом подходе можно непосредственно в схеме переопределенного метода использовать данные конечно-элементных вычислений. Показано, что коэффициенты высших приближений надежно определяются посредством переопределенного метода, основанного на поле напряжений, найденном из конечно-элементного анализа.
В статье изучена динамика попарного перепутывания трех кубитов, два из которых захвачены в резонаторе и взаимодействуют с одномодовым идеальным резонатором посредством однофотонных переходов, а третий кубит находится вне резонатора. При этом учитывается диполь-дипольная связь между изолированным кубитом и кубитом в резонаторе. Нами найдено решение квантового нестационарного уравнения Шредингера для полной волновой функции системы для начальных сепарабельных и бисепарабельных состояний кубитов и теплового начального состояния поля резонатора. С помощью указанных решений вычисляется критерий перепутанности пар кубитов - отрицательность. Результаты численного моделирования критерия отрицательности показали, что включение небольшой диполь-дипольной связи между изолированным и одним из захваченных кубитов может привести к существенному перепутыванию пар кубитов для всех начальных состояний. Наблюдается переход перепутанности от одной пары атомов к другим парам атомов в процессе эволюции системы. Показано также, что для некоторых сепарабельных и бисепарабельных состояний диполь-дипольное взаимодействие может подавить эффект мгновенной смерти перепутывания
Важной составляющей социально-экономического развития страны является наличие развитой мультимодальной транспортной системы. Одной из основных задач эффективного функционирования такой системы представляется в согласованности друг с другом отдельно взятых видов транспорта, что позволяет повысить транспортную доступность для потенциальных пассажиров в системе.
В работе исследуется проблема связности железнодорожной и авиационной систем на территории Российской Федерации (РФ). Разработана модель, позволяющая определить для каждого пункта полета доступность железнодорожного сообщения. В качестве метрики выступает время движения по дорогам. На основе разработанной модели сформированы группы пунктов полета по доступности альтернативного вида транспорта. Определены пункты, из которых теоретически могут осуществляться вылеты для подвоза потенциальных пассажиров к железнодорожным станциям, тем самым улучшая связность всей транспортной системы РФ.
Материалы совместного научного семинара института информатики и кибернетики и социально-гуманитарного института / сост. А.В. Куприянов, Ю.В. Васькина, Е.Н. Сергеева
Рассматривается задача формирования портфеля ценных бумаг, как задача бинарной оптимизации. Решение формируется с помощью разработанной модификации метода роя пчел, дополненного процедурой бинаризации с применением различных переходных функций. Исследована эффективность предложенного метода на модельных примерах и решена прикладная задача максимизации доходности портфеля с учетом ограничений на используемые средства и значение риска.
Рассматривается проблема приближенного синтеза замкнутой нелинейной непрерывной системы совместного оценивания и управления. Используется подход, основанный на применении идеи теоремы разделения для линейных динамических систем. При помощи операции факторизации нелинейная система преобразуется к похожей по структуре на линейную системе, а уже к трансформированной системе применяются алгоритмы синтеза оптимального линейного регулятора и наблюдателя состояния, особенностью которых является зависимость матриц, входящих в соответствующие уравнения Риккати, от вектора состояния. Приведен пример синтеза наблюдателя состояния и регулятора, демонстрирующий применение предложенного алгоритма.
Квантовые вычисления активно развиваются в последние десятилетия: увеличивается количество кубитов, с которыми оперирует квантовый компьютер, и снижается вероятность вычислительных ошибок. Поэтому возникает необходимость в разработке и анализе постквантовых криптосистем - криптосистем, устойчивых к атакам с использованием квантового компьютера. Одним из основных подходов к построению таких криптосистем является теория решёток. В данном подходе стойкость большинства криптосистем сводится к решению задачи нахождения кратчайшего вектора в решётке (SVP). В работе приводятся результаты анализа алгоритма 8-просеивания для решения SVP. Предлагается новый компромисс между временем работы и количеством используемой памяти алгоритма 8-просеивания. Приводится сравнение с известными алгоритмами k-просеивания. На отрезке (20-155n, 20-189n) используемой памяти предложенный алгоритм имеет минимальное время работы среди известных алгоритмов k-просеивания.
Сформулированы некоторые необходимые и некоторые достаточные условия максимальности периода конечно-автоматного генератора. Предложен способ построения генератора с максимальным периодом.