SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Имеющиеся в нашей литературе полные курсы теории функций комплексного переменного рассчитаны на читателей, избравших математику своей специальностью, другие же курсы обычно излагают лишь элементы теории. Между тем за последнее время в физике и технике получают все более широкое распространение методы, требующие обстоятельного применения теории функций. Почерпнуть необходимые для этого сведения из математических курсов нематематику трудно, а сведения, излагаемые в элементарных курсах, недостаточны.
Восполнение указанного пробела и является целью настоящей книги. Мы поставили своей задачей изложить в ней основные методы теории функций комплексного переменного для лиц, интересующихся этой теорией ради ее приложений к физическим и техническим задачам. Книга может быть использована в качестве учебного пособия студентами механических отделений, физических и физико-технических факультетов университетов и аспирантами технических вузов с достаточной математической подготовкой.
Предполагается, что читатель знаком с основами математического анализа в объеме двух первых томов книги В. И. Смирнова «Курс высшей математики» (т. I—II, Гостехиздат, 1949). Некоторые ссылки сделаны также на книгу Г. М. Фихтенгольца «Курс дифференциального и интегрального исчисления» (т. I—III, Гостехиздат, 1947—1949).
При подготовке этого издания я использовал те замечания к первому изданию, которые были сделаны И. М. Гельфандом, С. Крачковским, С. Г. Михлиным, А. Д. Мышкисом и О. А. Олейник. Особенно большую помощь оказала мне О. А. Олейник. Всех этих товарищей я горячо благодарю.
Книга посвящена общей теории дифференциальных уравнений в частных производных с постоянными коэффициентами. Главное внимание уделяется локальным свойствам решений, построению и исследованию различных фундаментальных решений, а также разрешимости «в целом».
Дано обстоятельное введение в широкий круг современных исследований, в большой степени интересных не только для математиков. Изложение в основном доступно студентам средних курсов физико-математических факультетов.
Хорошо известно, что многочисленные проблемы геометрии, вариационного исчисления и механики тесно связаны с краевыми задачами для эллиптических нелинейных уравнений.
В этой книге подробно изучаются взаимосвязи между геометрией и эллиптическими краевыми задачами. Наибольшее внимание уделено первой краевой задаче (задаче Дирихле). Остановимся теперь на методах и результатах, излагаемых в книге.
Содержит строгое изложение основ теории устойчивости движения, именно тех исследований Ляпунова и автора, которые наиболее важны для прикладных задач устойчивости.
Рассматриваются общие теоремы метода функций Ляпунова, в развитии которого автору принадлежит выдающаяся роль, устойчивость равновесий при потенциальных силах, устойчивость линейных систем, действие возмущающих сил на равновесие, устойчивость по первому приближению и в критических случаях одного нулевого и пары чисто мнимых корней, устойчивость неустановившихся и периодических движений.
Для студентов и аспирантов университетов и физико-технических институтов, а также инженеров, конструкторов и научных работников в области механики.
В книге исследуются асимптотические методы решений линейных обыкновенных дифференциальных уравнений второго порядка, содержащих большой параметр, в комплексной плоскости. Это — первая в мировой литературе монография, посвященная специально этим вопросам. Подробно изложен метод, который физики называют методом Ивана.
В книге рассматривается в основном одномерное уравнение Шрёдингера. В дополнении В. Маслова рассматривается многомерный случай. Асимптотические методы применяются к задаче на собственные значения и к задаче о рассеянии.
Книга представляет интерес для математиков, специализирующихся в области дифференциальных уравнений, и для физиков-теоретиков. Она будет полезна преподавателям, аспирантам и студентам старших курсов университетов, пединститутов и инженерно-физических вузов.
Второй специальный курс математического анализа содержит основы теории обобщенных функций и ее применения к общей теории уравнений с частными производными. Под названием «Анализ-4» этот курс несколько раз был прочитан автором на механико-математическом факультете МГУ.
В первой части книги излагаются начала теории обобщенных функций. За основу принято определение Соболева — Шварца (обобщенные функции = линейные непрерывные функционалы на пространстве финитных бесконечно дифференцируемых функций). Отбор фактов из теории обобщенных функций определяется в основном требованиями второй части.
Общая теория уравнений с частными производными, которой посвящена вторая часть, нагляднее сейчас уже большое количество серьезных разработок. Мы выбрали для изложения в курсе два ее раздела теория фундаментальных функций (и связанную с ней теорию гипотимонических Л. Хёрманда) и вопросы корректных задач в полном пространстве. Один из существенно основан на выборе уравнения поразительно вполне возможных использования сравнительно элементарного аналитического аппарата.
С момента выхода в свет первого издания настоящей книги прошло свыше десяти лет. За это время происходило как всестороннее развитие функционального анализа, так и интенсивное проникновение идей и методов функционального анализа в различные разделы математики, да и не только математики.
Функциональным анализом начинают все более широко пользоваться механики и инженеры, не говоря уже о физиках, которые одни из первых стали применять функционально-аналитические понятия и методы в своих теоретических исследованиях. Поэтому нет необходимости обосновывать значимость функционального анализа и его место в системе математических дисциплин.
Второй том настоящего издания в основном содержит подробный обзор материала, который ранее можно было найти только в статьях. Так, например, здесь последовательно излагается применение обобщенных производных и обобщенных интегралов к тригонометрическим рядам, новые результаты об интерполировании линейных операторов, о сходимости и суммируемости почти всюду, дополнительные сведения о применении методов теории функций комплексного переменного, применение функций Литтлвуда — Пэли к рядам Фурье, теория интегралов Фурье.
Несколько в стороне от основного содержания тома стоят главы о тригонометрической интерполяции и обзор результатов о кратных рядах Фурье.
Книга Зигмунда удачно дополняет известную монографию Н. К. Бари «Тригонометрические ряды» и наряду с ней может быть рекомендована студентам-математикам старших курсов и аспирантам различных специальностей как энциклопедия методов и фактов теории тригонометрических рядов.
Книга может служить пособием для специальных курсов по тригонометрическим рядам и другим разделам теории функций.
Первое издание книги А. Зигмунда «Тригонометрические ряды» вышло в 1935 году и было переведено на русский язык (ГОНТИ, 1939). Книга оказала существенное влияние на развитие теории рядов и до сих пор пользуется широкой популярностью у советских математиков.
В 1959 году книга Зигмунда вышла в новой редакции. Автор включил в нее много материала, который до того времени был опубликован лишь в периодической печати. В результате книга разрослась до двух томов.
Первый том по кругу рассмотренных в нем вопросов близок к первому изданию книги, однако во многих местах сделаны существенные дополнения, а некоторые доказательства заменены более прозрачными; часть материала перенесена во второй том.
Второй том настоящего издания в основном содержит новый материал. В нем последовательно излагаются применение обобщенных производных и обобщенных интегралов к тригонометрическим рядам, новые результаты об интерполировании линейных операторов и другие актуальные вопросы.
Настоящая книга А. Зигмунда и известная монография Н. К. Бари «Тригонометрические ряды» взаимно дополняют друга друга и, вместе взятые, могут быть рекомендованы студентам-математикам старших курсов и аспирантам различных специальностей как энциклопедия методов и фактов теории тригонометрических рядов.
Книга может служить пособием для специальных курсов по тригонометрическим рядам и другим разделам теории функций.