SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
На примере гипотезы Кнезера автор рассказывает о топологических методах современной комбинаторики. Книга основана на лекциях, которые автор читал в 2008 г. в Дубне на школе «Современная математика».
Книга будет интересна всем, кто интересуется современной комбинаторикой и ее приложениями.
Настоящая брошюра возникла на основе лекций, прочитанных автором на летней математической школе ¾ Современная математика в Дубне в 2006 г. В ней рассказывается о двух мощных методах современного дискретного анализа вероятностном и алгебраическом. Оба эти метода широко применяются сейчас для решения различных задач экстремальной комбинаторики. В частности, многие важные аспекты таких классических проблем, как проблема Борсука или проблема отыскания чисел Рамсея, рассматриваются исключительно с позиций вероятностной и алгебраической технологий.
В брошюре на наиболее ярких примерах подобных задач излагаются основы методов. Необходимые сведения из (элементарной) теории вероятностей, анализа и алгебры приводятся в конце брошюры в специальном разделе. Брошюра доступна студентам младших курсов и даже школьникам. Однако полезна она может быть всем, кто интересуется комбинаторикой.
Брошюра написана по материалам курса, прочитанного автором в 2010 г. в Летней школе «Современная математика». В ней рассказывается об основных понятиях теории алгебраической сложности и приводятся её начальные утверждения.
Рассматриваются задачи эффективного вычисления полиномов и билинейных форм, матричного умножения и алгебраической теории NP-полноты. Книга представляет интерес для широкого круга сравнительно подготовленных читателей, интересующихся математикой. Первое издание книги вышло в 2016 г.
Текст брошюры является переводом статьи «Communication complexity», опубликованной в сборнике «An Invitation to Mathematics: From Competitions to Research», D. Schleicher, M. Lackmann (eds.), Springer, 2011, при написании которой использовались материалы курса, прочитанного автором в 2009 году в Летней школе «Современная математика».
В брошюре рассказывается об основных понятиях теории коммуникационной сложности, и приводятся как начальные утверждения этой теории, так и формулировки открытых проблем. Книга представляет интерес для широкого круга подготовленных читателей, интересующихся математикой. Первое издание книги вышло в 2012 г.
Текст брошюры подготовлен по материалам лекции, прочитанной автором 21 февраля 2004 года на Малом мехмате МГУ для школьников 9—11 классов.
Читатель познакомится с такими классическими задачами на максимум и минимум, как задача Фаньяно, задача о построении фигуры максимальной площади заданного периметра, задача Штейнера о кратчайшей системе дорог и многими другими. Одна из глав посвящена коническим сечениям и их фокальным свойствам. В брошюре излагаются решения перечисленных выше задач, особое внимание уделено подробным доказательствам существования решения в экстремальных задачах. В конце каждого раздела помещён набор задач для самостоятельного решения.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, а также школьных учителей, руководителей математических кружков. При чтении последних разделов будет полезным (но не обязательным) знакомство с началами математического анализа.
Эта книга является непосредственным продолжением книги «Элементы комбинаторной и дифференциальной топологии». Она начинается с определения симплициальных гомологий и когомологий; приводятся многочисленные примеры их вычисления и их приложений. Затем обсуждается умножение Колмогорова—Александера на когомологиях. Значительная часть книги посвящена различным приложениям (симплициальных) гомологий и когомологий. Многие из них связаны с теорией препятствий.
Одним из таких примеров служат характеристические классы векторных расслоений. Сингулярные гомологии и когомологии определяются во второй половине книги. Затем рассматривается ещё один подход к построению теории когомологий — когомологии Чеха и тесно связанные с ними когомологии де Рама. Книга завершается различными приложениями теории гомологий в топологии многообразий. В книге приведено много задач (с решениями) и упражнений для самостоятельного решения.
Книга содержит много конкретного материала и приложений, которые могут заинтересовать даже специалистов в этой области.
Для студентов старших курсов и аспирантов математических и физических специальностей; для научных работников.
Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.
Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.
Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.
Эта книга, прежде всего, элементарное введение в замечательные работы Вогана Джонса и Виктора Васильева об инвариантах узлов и зацеплений и в их последующие модификации и обобщения, включая математическое изложение (в духе санкт-петербургской школы) инвариантов Эдварда Виттена, изначально построенных им на физическом уровне строгости.
Нашу книгу можно также рассматривать как введение в некоторые наиболее привлекательные геометрические главы трёхмерной топологии, в том числе в теорию кос, перестройки («хирургии») трёхмерных многообразий и разветвлённые накрытия.
Изогональное сопряжение относительно треугольника (A_1A_2A_3) сопоставляет точке (X) такую точку (Y), что прямая (YA_i) симметрична прямой (XA_i) относительно биссектрисы угла (A_i) ((i = 1, 2, 3)). Это преобразование обладает многими интересными свойствами. В частности, оно переводит друг в друга две замечательные точки треугольника — точки Брокара.
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 6 ноября 1999 года на Малом мехмате для школьников 9–11 классов.
Книга представляет собой вводный курс топологии. Основные понятия сначала описываются на интуитивно понятном уровне, а затем постепенно уточняются и становятся вполне строгими. Это позволяет сразу же заняться содержательными топологическими задачами.
Книга снабжена многочисленными иллюстрациями, которые нередко более важны для её понимания, чем текст. Каждая глава содержит задачи, обдумывание которых поможет лучше усвоить излагаемый материал.
Книга будет интересна всем, кто способен воспринимать изящество и элегантность геометрических конструкций и теорем.
Для школьников, преподавателей математики, руководителей кружков, студентов младших курсов математических специальностей.