SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Когда тебе, читатель, еще не исполнилось и года, ты получил в руки первые игрушки. Они гремели, свистели, пищали, и ты внимательно вслушивался в необычные звуки. Игрушки были еще и раскрашены в яркие цвета, ты тянулся к ним руками, глядел на них с удовольствием, хотя и не сознавал этого. Все живое тянется к цвету — так когда-то сказал немецкий поэт и ученый Иоганн Вольфганг Гете. В первые годы своей жизни ты воспринимал краски мира как должное. Потом ты стал задавать вопросы: а почему солнце желтое, почему небо голубое, почему трава зеленая?
Монография продолжает серию, посвященную результатам, полученным с помощью разработанного В.А. Ильиным спектрального метода исследования дифференциальных операторов. Исследуется вопрос получения оценок скорости равносходимости и оценок скорости сходимости спектральных разложений функций по системам корневых функций обыкновенных дифференциальных операторов различного порядка, заданных на конечном интервале числовой прямой, либо на всей прямой. Теоремы равносходимости позволяют перенести известные результаты о сходимости или расходимости хорошо изученных рядов (например, тригонометрических рядов или рядов по системам экспонент) на спектральные разложения по собственным и присоединенным функциям дифференциальных операторов. Приведены первые теоремы равносходимости спектральных разложений функций - теоремы Стеклова-Гобсона-Хаара, Тамаркина-Стоуна. Приведены и подробно доказаны первая теорема, содержащая оценку скорости локальной равносходимости спектральных разложений функций - теорема Ильина-Йо, а также первая теорема, содержащая оценку скорости равносходимости спектральных разложений функций на всем отрезке. Сформулирована и доказана теорема, обобщающая классическую теорему Ф. Рисса (Рисса-Фишера) на биортогональные системы функций. Книга предназначается математикам, физикам, прикладным математикам и инженерам, соприкасающимся со спектральной теорией дифференциальных операторов, студентам и аспирантам математических специальностей университетов.