SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Статья посвящена исследованию устойчивости стационарного решения для неавтономной линеаризованной модели Хоффа на геометрическом графе. Такая модель позволяет описывать конструкцию из двутавровых балок, находящуюся под внешним давлением и воздействием высоких температур. Используя условия устойчивости стационарного решения для такой модели, можно описать условия стабильности конструкции, описываемой данной моделью на геометрическом графе. Отметим, что для линеаризованной модели Хоффа нельзя применить метод экспоненциальных дихотомий, так как относительный спектр оператора уравнения может пересекаться с мнимой осью. Поэтому для исследования устойчивости мы будем применять второй метод Ляпунова. Статья кроме введения и списка литературы содержит две части. В первой из них приводятся условия разрешимости неавтономной линеаризованной модели Хоффа на геометрическом графе, а во второй исследуется устойчивость стационарного решения этой модели.
Негативное воздействие вибраций на различные устройства и механизмы может быть значительным, поэтому важно учитывать этот фактор при проектировании, эксплуатации и техническом обслуживании различного оборудования и инженерных систем. Для защиты от негативного воздействия вибраций могут использоваться различные методы и технологии. Часто используются специальные демпфирующие материалы. Данная исследовательская работа посвящена анализу эффективности снижения вибрации с учетом физических параметров эластомерных материалов. Для проведения исследования построена математическая модель, описывающая движение балки, опирающейся на эластомерное основание. Модель основана на системе нелинейных дифференциальных уравнений. В ходе работы был разработан и применен алгоритм численного решения этой системы уравнений. Были проведены численные эксперименты для изучения реакции системы на различные случаи ускорений. В результате были получены величины прогиба для материалов с различными физическими характеристиками. Эти результаты могут послужить отправной точкой для более глубокого изучения материалов и создания более сложных конструкций.
Впервые изучены детерминированная и стохастическая системы Вентцеля уравнений Дзекцера в полусфере и на его границе. В детерминированном случае установлена однозначная разрешимость начальной задачи для системы Вентцеля в специфическом построенном гильбертовом пространстве. В случае стохастической гидродинамической системы пласт - скважина - коллектор используется теория производной Нельсона - Гликлиха и строится стохастическое решение, которое позволяет определять прогнозы количественного изменения геохимического режима грунтовых вод при безнапорной фильтрации. Отметим, что для изучаемой системы фильтрации рассматривалось неклассическое условие Вентцеля, поскольку оно представлено уравнением с оператором Лапласа - Бельтрами, заданным на границе области, понимаемой как гладкое компактное риманово многообразие без края, причем внешнее воздействие представлено нормальной производной функции, заданной в области.
Статья посвящена изучению морфологии фазового пространства математической модели деформации двутавровой балки, которое лежит на гладких банаховых многообразиях с особенностями (k-сборка Уитни) в зависимости от параметров задачи. Математическая модель изучена в случае, когда оператор при производной по времени является вырожденным. Исследование вопроса неединственности решения задачи Шоуолтера - Сидорова для модели Хоффа в двумерной области проведено на основе метода фазового пространства, который был разработан Г.А. Свиридюком. Найдены условия неединственности решения в случае, когда размерность ядра оператора при производной по времени равна 1 или 2. Представлены два подхода для выявления количества решений задачи Шоуолтера - Сидорова в случае, размерности ядра оператора при производной по времени равного 2. Приведены примеры, иллюстрирующие неединственность решения исследуемой задачи на прямоугольнике.
В данной работе исследуется устойчивость решений стохастического уравнения Осколкова, описывающего плоскопараллельное течение вязкоупругой жидкости. Это уравнение мы рассматриваем в виде стохастического полулинейного уравнения соболевского типа. Во-первых, мы рассмотрим разрешимость стохастического уравнения Осколкова методом стохастического фазового пространства. Во-вторых, мы рассмотрим устойчивость решений этого уравнения. Доказаны необходимые условия существования устойчивых и неустойчивых инвариантных многообразий стохастического уравнения Осколкова. При решении задачи стабилизации это уравнение рассматривается как редуцированная стохастическая система уравнений. Задача стабилизации решается на основе принципа обратной связи; показаны графики решения до стабилизации и после стабилизации.
Обсуждается проблема поиска равновесных состояний машины Атвуда, в которой шкив конечного радиуса заменяется двумя отдельными малыми шкивами и оба груза могут колебаться в вертикальной плоскости. Получены дифференциальные уравнения движения системы и вычислены их решения в виде степенных рядов по малому параметру. Показано, что в случае грузов одинаковой массы равновесное положение r=const системы существует только при одинаковых амплитудах и частотах колебаний грузов и сдвиге фаз α = 0 или α = π. Кроме того, возможно состояние динамического равновесия, когда оба груза совершают колебания с одинаковыми амплитудами и частотами, а сдвиг фаз составляет α=±π/2. При этом длины маятников также совершают колебания около некоторого равновесного значения. Сравнение полученных результатов с соответствующими численными решениями уравнений движения подтверждает их корректность. Все необходимые вычисления выполняются с помощью системы компьютерной алгебры Wolfram Mathematica.
Работа связана с изучением нелинейных параболических систем, возникающих при моделировании и управлении нестационарными процессами фильтрации в подземной гидродинамике. Одна из постановок является системой, которая включает в себя краевую задачу второго рода для квазилинейного параболического уравнения с неизвестной функцией источника в правой части, а также уравнение изменения по времени этой функции. В другой постановке рассматривается проблема управления этой системой с управляющим воздействием граничного режима. Данные постановки существенно отличаются от обычных краевых задач и задач управления для параболических уравнений, в которых предполагается, что все входные данные должны быть заданы. Полученные в работе результаты представляют не только теоретический интерес, они имеют практическое значение для исследования различных фильтрационных процессов. Приведены некоторые примеры таких приложений, связанных с движением жидкости в трещиновато-пористых средах.
Работа связана с изучением нелинейных параболических систем, возникающих при моделировании и управлении физико-химическими процессами, в которых происходят изменения внутренних свойств материалов. Исследовано оптимальное управление одной из таких систем, которая включает в себя краевую задачу третьего рода для квазилинейного параболического уравнения с неизвестным коэффициентом при производной по времени, а также уравнение изменения по времени этого коэффициента. Обоснована постановка оптимальной задачи с финальным наблюдением искомого коэффициента, в которой управлением является граничный режим на одной из границ области. Получено явное представление дифференциала минимизируемого функционала через решение сопряженной задачи. Доказаны условия ее однозначной разрешимости в классе гладких функций. Полученные результаты имеют практическое значение для приложений в различных технических областях, медицине, геологии и т.п. Приведены некоторые примеры таких приложений.
В данной статье рассматривается построение фазовых портретов линейных и нелинейных систем на плоскости. Особое внимание уделяется нелинейным системам, чьи фазовые портреты обладают более сложной и разнообразной структурой, требующей дополнительных исследований. В результате исследования была разработана программа программа, которая строит фазовые портреты линейных и нелинейных систем с помощью метода Эйлера, а также анализирует типы особых точек и их устойчивость.