SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Книга английских математиков, дающая краткое введение в качественную теорию дифференциальных уравнений и ее приложений к системам, зависящим от времени. Авторы знакомят читателей с методами получения результатов и показывают, как их применять. Помимо классических приложений в области механики и электротехники, приведены примеры из области экологии, уфологии, экономики и медицины. Для математиков-прикладников, преподавателей, аспирантов и студентов вузов.
Настоящая книга представляет собой седьмой выпуск серии «Курс высшей математики и математической физики» и посвящена теории обыкновенных дифференциальных уравнений и уравнений в частных производных первого порядка. В начале книги разбирается ряд физических примеров, приводящих к дифференциальным уравнениям того или иного типа. В дальнейшем наряду с начальной задачей излагаются краевая задача и задача Штурма — Лиувилля, изучение которой имеет
важное значение для решения задач математической физики. Большое внимание уделено основным понятиям, идеям и теоремам численных и асимптотических методов решения дифференциальных уравнений.
Вниманию читателей предлагается классический учебник по математике, написанный на основе лекций, которые автор, выдающийся советский математик Л.С.Понтрягин, в течение ряда читал на механико-математическом факультете Московского государственного университета имени М.В.Ломоносова. По мнению автора, наиболее важные и интересные применения обыкновенные дифференциальные уравнения находят в теории колебаний и в теории автоматического управления. Эти применения и послужили руководством при выборе материала для курса лекций. Помимо этого материала, снабженного примерами с подробными решениями, в книгу включены некоторые более трудные вопросы, разбиравшиеся на студенческих семинарах.
Книга предназначена студентам математических специальностей университетов, аспирантам, преподавателям, научным работникам.
Пособие охватывает все разделы курсов «Дифференциальные и интегральные уравнения. Вариационное исчисление». По каждой теме кратко излагаются основные теоретические сведения; приводятся решения стандартных и нестандартных задач; лаются задачи с ответами для самостоятельной работы.
Для студентов вузов, обучающихся по специальностям «Физика»
и «Прикладная математика».
В пособии содержатся все традиционные разделы курса обыкновенных дифференциальных уравнений. Излагаются важные как в теоретическом, так и в прикладном отношении разделы по теории дифференциальных уравнении с аналитическими правыми частями и по теории устойчивости движения.
Книга известного американского математика, дающая обстоятельный обзор одного из современных направлений на стыке геометрии и дифференциальных уравнений. Цель автора - обучить читателя практически пользоваться аппаратом теории групп Ли. Примеры и содержательные приложения занимают в книге больше места, чем общая теория; они взяты из классической механики, гидродинамики, теории упругости и других прикладных областей. Для чтения книги достаточно основ анализа и алгебры: все необходимые сведения из геометрии многообразий содержаться в самой книге.
Для математиков-прикладников ,механиков ,физиков, аспирантов и студентов университета.
В книге изложены основы теории обыкновенных дифференциальных включений с компактнозначной (не обязательно выпуклозначной) правой частью в конечномерных пространствах. Исследованы вопросы устойчивости множества решений к внутренним и внешним возмущениям, радиусы которых задаются непрерывными и измеримыми функциями. Показана связь устойчивости множества решений с принципом плотности. В качестве приложений рассмотрены периодическая и двухточечная краевая задачи. Для студентов и аспирантов математических специальностей, преподавателей, научных работников, и всех, кто интересуется теорией и приложениями дифференциальных уравнений и включений.
Излагается математическая технология решения линейных и нелинейных краевых задач. На базе методов квазилинеаризации, операционного исчисления и расщепления по пространственным переменным получены точные и приближённые аналитические решения уравнений в частных производных первого и второго порядка. Найдены условия однозначной разрешимости нелинейной краевой задачи и даётся оценка скорости сходимости итерационного процесса. На примере пробных функций приведены результаты сравнения аналитических решений, полученных по предложенной математической технологии, с точным решением краевых задач и с численными решениями по известным методам. Для научных работников и студентов старших курсов физико-математических специальностей.
Монография посвящена теории криволинейного мультипликативного интеграла от матричных функций, заданных в алгебрах Ли типа со значениями в соответствующих группах Ли. Для криволинейного мультипликативного интеграла определяется понятие вариации. Установлена связь между вариацией криволинейного мультипликативного интеграла и калибровочным преобразованием подынтегральной матричной дифференциальной формы. Рассмотрено понятие вариационной производной, установлены аналоги уравнений Эйлера-Лагранжа, Гамильтона и преобразования Лежандра. Книга предназначена для студентов, обучающихся в магистратуре, аспирантам и преподавателям.
Основное содержание книги — изложение результатов проведенных авторами исследований по математической теории солитонов. Предлагаемые методы конечнозонного интегрирования проиллюстрированы на ряде фундаментальных уравнений математической физики. Приведены базовые сведения по алгебраической геометрии и аналитической теории тэта-функций. В Приложении построен класс изомонодромных решений уравнения Белавина-Полякова-Замолодчикова. Для научных работников — математиков, физиков, а также для студентов и аспирантов соответствующих специальностей