SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Введение в теорию дифференциальных уравнений

Книга содержит весь учебный материал в соответствии с программой Минвуза по курсу дифференциальных уравнений для механико-математических и физико-математических специальностей университетов. Имеется также небольшое количество дополнительного материала, связанного с техническими приложениями. Это позволяет выбирать материал для лекций в зависимости от профиля вуза. Объем книги существенно уменьшен по сравнению с имеющимися учебниками за счет сокращения дополнительного материала и выбора более простых доказательств из имеющихся в учебной литературе. Теория излагается достаточно подробно и доступно не только для сильных, но и для средних студентов. Приводятся с пояснениями примеры решения типовых задач. В конце параграфов указываются номера задач для упражнений из «Сборника задач по дифференциальным уравнениям» А. Ф. Филиппова и указываются некоторые теоретические направления, примыкающие к изложенным вопросам, со ссылками на литературу.

Формат документа: pdf
Год публикации: 2007
Кол-во страниц: 242 страницы
Доступ: Всем
Книга: О кривых, определяемых дифференциальными уравнениями

Первым большим исследованием Пуанкаре является ряд мемуаров «О кривых, определяемых дифференциальными уравнениями», который даётся русскому читателю в настоящем переводе. В некоторых вопросах, сюда относящихся, результаты Пуанкаре являются фундаментальными и служат основанием для ряда последующих работ. Таково исследование интегральных кривых на плоскости; здесь следующий существенный вклад принадлежит Бендиксону; таково исследование траекторий на торе, впоследствии существенно дополненное Данжуа (об исследованиях последнего сообщается в дополнении к настоящему изданию). Общий вопрос об интегральных кривых в n-мерном пространстве только поставлен Пуанкаре, и полученный им ряд результатов носит предварительный характер; но сколько-нибудь полного развития эта теория не получила и до настоящего времени, указывая путь новым исследованиям.

Формат документа: pdf, djvu
Год публикации: 1947
Кол-во страниц: 394 страницы
Доступ: Всем
Книга: Дифференциальные уравнения: то решаем, то рисуем

В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других — как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.

Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости. Книга не заменяет вузовские учебники, но так как в ней затрагиваются и не освещаемые в них вопросы, а часть других вопросов освещается иначе, то она может заинтересовать и студентов вузов со значительной математической программой.

Формат документа: pdf
Год публикации: 2008
Кол-во страниц: 200 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Численные процессы решения дифференциальных уравнений

Книга посвящена исследованию устойчивости и оптимизации численных процессов решения дифференциальных уравнений. В отличие от монографий подобного рода в ней подробно изучаются ошибки округления при выполнении расчетов на машинах с плавающей и фиксированной запятой.

Авторы развили оригинальный подход к этой проблеме и получили ряд новых интересных результатов. Многочисленные примеры иллюстрируют особенности различных алгоритмов.

Книга рассчитана на широкий круг читателей. Она будет полезна математикам-вычислителям, программистам, инженерам, использующим ЭВМ, а также всем, кто имеет дело с численным решением дифференциальных уравнений.

Формат документа: pdf, djvu
Год публикации: 1969
Кол-во страниц: 367 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Справочник по дифференциальным уравнениям в частных производных первого порядка

Книга Э. Камке является единственным в мировой литературе справочником по дифференциальным уравнениям в частных производных первого порядка для одной неизвестной функции. В ней дается конспективное изложение важнейших разделов теории и собрано около 500 уравнений с решениями.

Книга предназначена для широкого круга научных работников и инженеров, сталкивающихся в своей практической деятельности с дифференциальными уравнениями. Значение этого справочника особенно велико в связи с тем, что в настоящее время на русском языке нет книги, в которой бы всесторонне и полно освещалась теория вопроса.

Формат документа: pdf, djvu
Год публикации: 1966
Кол-во страниц: 260 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Дифференциальные уравнения в частных производных физики

В книге А. Зоммерфельда «Дифференциальные уравнения в частных производных физики», являющейся шестым томом его лекций по теоретической физике, последовательно изложен круг вопросов, входящих обычно в курс методов математической физики (ряды Фурье, проблемы, связанные с рассмотрением уравнений в частных производных второго порядка, цилиндрические и шаровые функции, уравнения колебаний мембран и т. д.).

В отличие от книг, имеющихся по этому разделу математики, в книге Зоммерфельда много внимания уделено физической стороне дела: рассмотрению физических проблем и конкретных задач. В конце книги в виде задач дан полезный дополнительный материал, непосредственно примыкающий к основному тексту.

Книга рассчитана на широкий круг читателей, прежде всего физиков всех специальностей; ее с интересом прочтут также математики, занимающиеся вопросами теоретической физики.

Формат документа: pdf, djvu
Год публикации: 1950
Кол-во страниц: 461 страница
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Дифференциальные уравнения и вариационное исчисление

Третий выпуск «Курса высшей математики и математической физики» для физических и физико-математических факультетов содержит теорию дифференциальных уравнений и вариационное исчисление. В основу книги положены лекции, которые автор в течение ряда лет читал на физическом факультете Московского ордена Ленина государственного университета им. М. В. Ломоносова.

Излагаемый материал хотя и близок к содержанию книг автора «Дифференциальные уравнения» (М., Гостехиздат, 1957) и «Вариационное исчисление» (М., Гостехиздат, 1958), однако по совету редакторов Курса в него внесен ряд изменений. За эти советы автор выражает им свою искреннюю признательность.

Формат документа: pdf, djvu
Год публикации: 1969
Кол-во страниц: 424 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Дифференциальные уравнения

Книга посвящена теории дифференциальных уравнений — той отрасли математики, которая находит чрезвычайно широкие и многообразные применения в физике и технике. Ее автор, крупнейший итальянский математик Ф. Дж. Трикоми, хорошо известен советскому читателю по переводам трех его монографий: «Уравнения смешанного типа», «Лекции по уравнениям в частных производных» и «Интегральные уравнения».

Книга, предлагаемая вниманию читателя, написана со свойственными автору простотой, ясностью и изяществом. Тщательный отбор материала и продуманность изложения позволяют при сравнительно небольшом объеме осветить многие важные задачи, идеи, методы и результаты современной теории дифференциальных уравнений, которые обычно опускаются в общих курсах.

Книга написана весьма просто. Она может служить пособием для студентов и аспирантов математиков и физиков, а также для инженеров. Немало интересного найдут в ней и специалисты-математики.

Формат документа: pdf, djvu
Год публикации: 1962
Кол-во страниц: 352 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Курс дифференциальных уравнений (8-е изд.).

Курс дифференциальных уравнений в объёме нашей университетской программы по необходимости слагается из глав, соответствующих различным отделам научной теории этой ветви математического анализа.

Элементарные методы интеграции, теоремы существования, особые решения, общая теория линейных уравнений — эти главы в современном состоянии науки связаны с теорией групп Ли, с применением методов теории функций действительного и комплексного переменного, с методами линейной алгебры и т. п.

Современное понятие о математической строгости, постепенно внедряющееся в курсы анализа, не позволяет строить учебник дифференциальных уравнений с невыясненной точки зрения на взаимную связь отделов — например, элементарных методов интегрирования и теорем существования.

Далее, развитие самой теории и современных её приложений требует введения в университетский курс новых вопросов, связанных, с одной стороны, с развитием качественных методов, с другой стороны, с теоремами колебаний для линейных дифференциальных уравнений.

Формат документа: pdf, djvu
Год публикации: 1959
Кол-во страниц: 468 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Обыкновенные дифференциальные уравнения, том 1.

Два тома книги Дж. Сансоне весьма богаты по своему содержанию. В них нашли достаточно полное освещение такие вопросы, как краевые задачи для обыкновенных дифференциальных уравнений, асимптотическое поведение решений линейных уравнений, теоремы существования, единственности, непрерывности и дифференцируемости решений и многие другие. Пожалуй, главной темой книги являются весьма важные для приложений математики краевые задачи и непосредственно связанные с ними задачи об асимптотическом поведении решений на бесконечности.

В различных главах первого и второго томов рассмотрены всевозможные постановки линейных и нелинейных краевых задач и разобраны самые разнообразные методы их решений. Автор книги всюду, где это возможно, иллюстрирует изложения на примерах применений к реальным математическим задачам, в этих вопросах выкладки до окончательных формул.

Последние три главы второго тома (около трехсот страниц) посвящены обстоятельному изложению приложения к вопросам нелинейных колебаний, слияния, графических и аналитических методов — оперативно-статических уравнений, а также вопросам теории нелинейных колебаний. Наличие этих глав делает книгу Сансоне полезной не только для математиков, но и для инженеров и научных работников технических институтов, которым приходится иметь дело с дифференциальными уравнениями.

Формат документа: pdf, djvu
Год публикации: 1953
Кол-во страниц: 346 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
← назад вперёд →