SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В первой главе читателю предлагается несколько задач-головоломок на составление разнообразных фигур из частей квадрата (своего рода “геометрический конструктор”). Во второй главе рассматриваются геометрические способы раскройки квадратов для головоломок первой главы, обоснование возможности превращения фигур и ряд задач для самостоятельного решения. В третьей главе рассказывается о некоторых замечательных свойствах квадрата. В конце каждой главы приведены решения задач, предложенных читателю. Упражнения в конструировании фигур из частей квадрата имеют и практический смысл - они могут помочь в рациональном раскрое материалов. Пример расчета экономного раскроя материала приведен в послесловии книги.
Эта книжка предназначается главным образом для школьников, а также для занимающихся самообразованием взрослых читателей, математическое образование которых ограничивается средней школой. В основу книжки положена лекция, прочитанная автором для московских школьников седьмых и восьмых классов.
При подготовке лекции к изданию автор немного расширил её, стараясь, однако, не уменьшать доступности изложения. Самым существенным добавлением является п. 13 — об эллипсе, гиперболе и параболе как сечениях конической поверхности.
Чтобы не увеличивать объёма книжки, большинство сведений о кривых излагается без доказательств, хотя во многих случаях доказательства можно было бы дать в доступной для читателя форме.
В брошюре рассказано о зарождении математики и ее дедуктивном построении. Рассмотрены два примера - теорема Пифагора и задача описания всех пифагоровых троек.
Текст данной брошюры, вышедшей в серии “Библиотека “Математическое просвещение””, представляет собой обработку записи лекции, прочитанной лауреатом Государственной премии СССР академиком РАН Д.В. Аносовым 5 декабря 1999 г. для участников III Международного математического турнира старшеклассников “Кубок памяти А.Н. Колмогорова” - школьников 8-11 классов.
Теория цепных дробей связана с теорией приближений вещественных чисел рациональными, с теорией динамических систем, а также со многими другими разделами математики. В брошюре рассказано о связи цепных дробей с геометрией выпуклых многоугольников. Из этой связи следует, например, что цепная дробь периодична в тех и только тех случаях, когда выражаемое ей число является корнем квадратного уравнения с целыми коэффициентами. Рассказано также о том, насколько часто среди элементов цепной дроби, выражающей произвольное вещественное число, встречается единица (двойка, тройка, …). В заключительном разделе брошюры содержится обзор результатов, связанных с многомерными обобщениями классической теории цепных дробей, полученных в последнее время.
Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором для школьников 9—11 классов 2 декабря 2000 года на Малом мехмате МГУ.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей, а отчасти она будет интересна и профессиональным математикам.
Первое издание книги вышло в 2001 году.
Сборник, составленный из трех небольших книжек по занимательной математике известного американского писателя и популяризатора Стивена Барра: “Россыпи головоломок”, “Новые россыпи головоломок” и “Топологические эксперименты”. Одним из достоинств книги является ее полнейшая несистематичность: все задачи в ней независимы, Вы можете выбрать себе из нее “изюминку” по вкусу.
Знаменитые проблемы, сформулированные Давидом Гильбертом на Парижском международном математическом конгрессе 1900-го года, оказали определяющее влияние на развитие математики XX столетия. Одна из целей этой брошюры - показать, что многие известные и достаточно сложные математические проблемы возникают вполне естественным образом, так что даже старшеклассник может понять причины появления этих проблем и их формулировки.
Уравнения Пелля представляют собой класс диофантовых уравнений второй степени. Они связаны со многими важными задачами теории чисел. Решение уравнений Пелля - задача непростая, хотя и выполнимая методами элементарной математики. Ключевую роль в исследовании этих уравнений играет геометрическая лемма Минковского о выпуклом теле. Эта лемма неожиданно возникает во многих задачах теории чисел и является одним из ярких примеров связи алгебры и геометрии.
Основной результат, которому посвящена брошюра, - полное описание решений уравнений Пелля.
Текст брошюры представляет собой обработанную и расширенную запись двух лекций, прочитанных автором 19 февраля и 15 апреля 2000 года на Малом мехмате МГУ для школьников 9-11 классов.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.
Книга представляет собой популярное изложение элементов теории игр и некоторых способов решения матричных игр. Она почти не содержит доказательств и иллюстрирует основные положения теории примерами. Для чтения достаточно знакомства с элементами теории вероятностей и математического анализа.
Книга предназначена для популяризации идей теории игр, имеющей широкое практическое применение в экономике и военном деле.
Комбинаторика — важный раздел математики, знание которого необходимо представителям самых разных специальностей. С комбинаторными задачами приходится иметь дело физикам, химикам, биологам, лингвистам, специалистам по кодам и др. Комбинаторные методы лежат в основе решения многих задач
теории вероятностей и ее приложений, В книге в популярной форме рассказывается об интересных комбинаторных задачах и методах их решения.