SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В предлагаемоm выпуске сборника «Упорядоченные множества и решетки» помещается серия обзоров по теории решеток (структур). Эти обзоры составлены в основном по материалам реферативного журнала «Математика» за период с начала 1969 г. по июнь 1973 г. включительно. Они тесно связаны с предыдущими обзорами по теории решеток (структур), появившимися в серии «Итоги науки».
Сборник представляет интерес для научных работников, аспирантов и студентов, которые занимаются современной алгеброй.
Настоящая монография представляет собой, быть может, первое по времени, связное изложение теории всех типов обобщенных групп. Сюда вошли как мои собственные исследования, изложенные частью в моей диссертации,¹ частью в отдельных моих работах, помещенных в разных математических журналах, так и исследования других математиков, посвященные обобщенным группам.
Несмотря на мои старания охватить предмет как можно полнее, я, конечно, не могу претендовать на исчерпывающую полноту; могу только сказать, что использовал всю доступную мне литературу, относящуюся к обобщенным группам, и считал необходимым дать читателю хотя бы небольшое представление о всех известных мне типах обобщенных групп.
В настоящей книге изложены классические результаты о строении нормальных делителей полной линейной группы над телом, теоремы Бернсайда и Шура о периодических линейных группах, теорема о нормальном строении SL(n, Z) при n > 2. Кроме того, здесь содержится теория разрешимых, нильпотентных и локально нильпотентных линейных групп. Более полное представление о содержании дает следующий обзор ее глав.
В первой главе речь идет о группах подстановок (конечных и бесконечных). После изложения начальных сведений устанавливается связь теории примитивных разрешимых групп подстановок (не обязательно конечной степени) с теорией разрешимых линейных групп над простыми полями. Здесь же изучаются нильпотентные и локально нильпотентные группы подстановок.
Дано, например, полное описание максимальных нильпотентных подгрупп симметрической группы конечной степени. Доказана, например, теорема о сопряженности максимальных транзитивных нильпотентных подгрупп конечной симметрической группы.
Книга М. Судзуки посвящена вопросу, возникшему из двух больших разделов математики: теории групп и теории структур. В ней рассматривается структура, которую образуют все подгруппы группы, и изучаются взаимодействия свойств этой структуры со свойствами самой группы. Она содержит обзор основных достижений в указанной области и может служить хорошим дополнением к имеющейся алгебраической литературе.
Книга рассчитана на научных работников, аспирантов и студентов старших курсов университетов и пединститутов, интересующихся современной алгеброй, особенно теорией групп, теорией структур и их приложениями.
Книга известного американского математика, содержащая весьма полное и последовательное изложение идей, методов и результатов современной алгебраической топологи, включая теорию гомотопий, гомологий, теорию препятствий и т. д. После каждой главы приводятся упражнения, удачно дополняющие основной текст. От читателя не требуется почти никаких предварительных знаний в этой области.
Книга может служить как учебником, так и справочником по алгебраической топологии и будет полезна весьма широкому кругу математиков, начиная со студентов младших курсов.
Книга написана на основе лекций американского математика Р. Стейнберга, прочитанных им в Йельском университете (США). Хотя объем книги невелик, в ней дано, по-видимому, наиболее полное из существующих изложение теории групп Шевалле — одного из важных разделов математики, объединяющего идеи алгебры, анализа и теории чисел.
Она будет интересна широкому кругу математиков. Написанная одним из ведущих специалистов, она вполне доступна студентам университетов и педагогических институтов.
Предлагаемая книга представляет собой монографию, посвященную теории многомерных матриц и детерминантов и ее различным приложениям. В ней обобщаются основные результаты обычного матричного исчисления на случай пространства трех и большого числа измерений и рассматриваются вопросы, еще мало освещенные в русской математической литературе.
Основной текст сопровождается упражнениями, значительно расширяющими его содержание. Книга рассчитана на научных работников в области математики и ее приложений.
Настоящее руководство адресовано тем математикам, которые хотят ознакомиться с основами теории структур, хотя еще (или уже!) не избрали эту ветвь алгебры своей специальностью. Поэтому при отборе результатов предпочтение отдавалось тем из них, которые или способствуют выработке теоретико-структурного мышления, или находят применение в других областях математики. Для более полного знакомства с теорией структур следует обратиться к монографиям Биркгофа и Сикорского.
Последние достижения теории структур освещены в соответствующих статьях сборника «Итоги науки». Необходимые библиографические указания имеются в конце книги. Там же перечислены известные автору учебники по теории структур. Некоторые из них сопровождаются обширными списками журнальной литературы. Автор не чувствовал себя ограниченным указанным автором некоторых из включенных в него результатов.
«Все в связи и взаимодействии». Нахождение частных проявлений этого общего закона, т. е. установление связей между различными явлениями, — одна из основных задач всякой науки. Поэтому всегда приятно, когда обнаруживаются глубокие связи между, на первый взгляд, совершенно разнородными математическими объектами.
Одна из таких связей — связь между дедекиндовыми структурами с дополнениями и регулярными кольцами — вскрылась на стыке алгебры, геометрии и функционального анализа. Более подготовленный читатель может познакомиться с этой идеей подробнее, прочитав следующее ниже введение. Менее подготовленному придется начинать с основного текста, чтение которого формально не требует никакой предварительной подготовки.
Все используемые понятия, кроме идеала кольца и частично упорядоченного множества, определяются. Доказательства, особенно на первых порах, проводятся весьма подробно. Ряд интересных результатов, не вошедших в основную линию изложения, упомянут в последнем параграфе. Там же формулируются некоторые проблемы.
Автор — выдающийся французский математик, знакомый советскому читателю по русскому переводу его монографий «Алгебраические группы и поля классов», «Когомологии Галуа» («Мир», 1968) и «Группы Ли и алгебры Ли» («Мир», 1969). С присущим ему мастерством он излагает классическую теорию представлений конечных групп над полем комплексных чисел и теорию Брауэра (теорию модулярных характеров).
Книга представляет интерес для математиков различных специальностей, в первую очередь для специалистов по алгебре и функциональному анализу. Основная ее часть доступна студентам и аспирантам-математикам, а также физикам и химикам-теоретикам.