SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В книге собраны задачи Московских математических олимпиад 1935— 1957 г. с ответами, указаниями и подробными решениями. В дополнениях приведены основные факты, используемые в решении олимпиадных задач.
Все задачи в том или ином смысле нестандартные. Их решение требует смекалки, сообразительности, а иногда и многочасовых размышлений.
Книга предназначена для учителей математики, руководителей кружков, школьников старших классов, студентов педагогических специальностей. Книга будет интересна всем любителям красивых математических задач.
Классическая двойственность Шура–Вейля приводит к эффективным способам построения инвариантных полиномов для простых алгебр Ли. Теория квантовых групп, возникшая в 1980-х гг., привнесла специальную матричную технику, с помощью которой удалось получить аналогичные конструкции новых семейств элементов Казимира для алгебр Ли классических серий. Операторы Сугавары — это аналоги элементов Казимира для аффинных алгебр Каца–Муди.
Цель книги состоит в описании алгебраических структур, связанных с аффинными алгебрами Ли, включая аффинные вертексные алгебры, янгианы и классические W-алгебры. Эти структуры проявляются во многих областях математики и математической физики, таких как теория модулярных форм, конформная теория поля, интегрируемые системы и солитонные уравнения. В книге развивается аффинная версия матричной техники, которая затем применяется для объяснения элегантных конструкций операторов Сугавары, появившихся за последнее десятилетие. Аффинный аналог изоморфизма Хариш-Чандры связывает операторы Сугавары с классическими W-алгебрами, играющими роль инвариантов группы Вейля в конечномерной теории.
Для студентов, аспирантов и научных сотрудников физико - математических специальностей.
Шестая книжка серии «Школьные математические кружки» посвящена различным подходам к сравнению и вычислению площадей и объёмов и предназначена для занятий со школьниками 6–11 классов.
В неё вошли разработки четырёх занятий математического кружка, в каждом из которых подробно разобраны задачи различной сложности и даны методические указания для учителя. Приведён также список дополнительных задач.
В приложении имеются различные варианты раздаточного материала. Брошюра адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям математики.
В книге Ю. И. Манина собраны написанные и опубликованные в разные годы очерки по истории и философии математики и физики, теории культуры и языка, а также впервые публикуемые отрывки из воспоминаний, стихи и стихотворные переводы.
Всякое одномерное семейство прямых на плоскости (кроме вырожденных случаев) является семейством касательных к некоторой кривой. В пространстве, однако, это уже совершенно не так; в брошюре объясняется, как, глядя на одномерное семейство прямых в пространстве, определить, является ли оно «касательным».
По ходу дела читатель знакомится с такими важными понятиями современной математики, как внешняя алгебра и грассмановы многообразия. Брошюра написана по материалам цикла лекций на Летней школе «Современная математика» в Дубне в 2003 г. Она доступна студентам младших курсов и школьникам старших классов.
В реплике из эпиграфа все неверно: LATEX не является текстовым редактором, работает отнюдь не только под операционной системой Linux (хотя и под ней тоже), наконец, его название произносится не «латекс», а «латех». Так что же такое LATEX? Если отвечать одной фразой, это издательская система на базе TEX’а.
Система компьютерной верстки TEX (произносится «тех») была создана выдающимся американским математиком и программистом Дональдом Кнутом в конце 70-х годов XX века; издательские системы на ее базе по сию пору широко используются и сдавать позиции не собираются. Чем объясняется столь редкое в компьютерном мире долголетие?
Эта брошюра представляет собой расширенный вариант курса лекций, прочитанного автором на втором курсе Независимого московского университета в весеннем семестре 2002 года.
Помимо традиционного материала, приведены сведения о компактных римановых поверхностях; обсуждаются такие результаты, как теорема Римана{Роха и (отчасти) теорема Абеля, а в первом нетривиальном случае (для эллиптических кривых) приводятся и доказательства.
Первое издание книги вышло в 2004 году.
Эти записки более или менее соответствуют курсу «Введение в когомологии пучков», прочитанному автором в НМУ в осеннем семестре 1997 года. Соответствие между разделами текста и отдельными лекциями не является взаимно однозначным.
По сравнению с текстами, раздававшимися слушателям после занятий, добавлены записки заключительной лекции (разд. 9). Текст слегка отредактирован; исправлены некоторые ошибки, в том числе и те, на которые мне указали слушатели.
Практически вся теория, изложенная в лекциях, была создана французскими математиками в 50-е годы нашего столетия. Не претендуя на изложение истории вопроса, назовем четыре имени. Ж. Лере и А. Картан создали понятие пучка. Ж.-П. Серр, ориентируясь на работы Картана по теории функций многих комплексных переменных, применил пучки и когомологии к алгебраической геометрии. Наконец, А. Гротендик систематизировал и далеко развил теорию пучков¹. Большая часть нашего курса соответствует примерно половине основополагающей работы Серра [10].
Хочу выразить глубокую благодарность всем слушателям курса за внимание и чрезвычайно полезные замечания. Особенно ценную обратную связь я получал от С. Васильева, О. Попова и А. Черепанова.
В учебном пособии излагаются основные понятия и факты теории информации. Рассмотрены способы измерения, передачи и обработки информации. Значительное внимание уделено свойствам меры информации, характеристикам канала связи, помехозащитному, уплотняющему и криптографическому кодированию.
Кроме того, рассмотрены вопросы формализации информации, в частности, в документах Internet. Изложение сопровождается большим количеством примеров и упражнений.
Для студентов втузов соответствующих специальностей и всех интересующихся вопросами точной работы с информацией и методами построения кодов с полезными свойствами.
Настоящая книга посвящена производящим функциям — языку, на котором говорит современная перечислительная комбинаторика. Этот язык используется и во многих других областях математики и математической физики.
Книга предназначена, в первую очередь, для студентов младших курсов физико-математических специальностей. В ней разобрано много примеров и содержится большое количество задач для самостоятельного решения.
Предыдущее издание книги вышло в 2004 г.