SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В математике часто рассматриваются множества, между элементами («точками») которых определено расстояние (метрика). Такие множества называют метрическими пространствами, если выполнены соответствующие аксиомы. Существует много разных способов определить расстояние в разных множествах. В брошюре обсуждается, как можно измерять расстояние не только между точками на плоскости, но и между кривыми, множествами, функциями. Важным примером расстояния между кривыми является хаусдорфова метрика. Многие метрические пространства разительно отличаются от привычной евклидовой плоскости. Примером метрики с необычными свойствами может служить p-адическая метрика, относящаяся к классу так называемых неархимедовых метрик.
Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором 17 февраля 2001 года на Малом мехмате МГУ для школьников 9—11 классов (запись Р. К. Ахунжанова).
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей…
Брошюра содержит популярное изложение важного для современной математики понятия частично упорядоченного множества. Рассмотрены понятия точной верхней и точной нижней граней, введены структуры (решетки), рассмотрены алгебраические свойства операций взятия точных граней, введены дистрибутивные структуры.
Для учащихся старших классов средней школы и студентов младших курсов вузов.
Учебное пособие содержит систематическое изложение курса “Программирование” с использованием среды Турбо Паскаль. Оно написано в соответствии с требованиями государственного стандарта по специальности 050203.65 (физика с дополнительной специальностью информатика) и специальности 050203 (физика).
Брошюра содержит популярное изложение важного для современной математики понятия частично упорядоченного множества. Рассмотрены понятия точной верхней и точной нижней граней, введены структуры (решетки), рассмотрены алгебраические свойства операций взятия точных граней, введены дистрибутивные структуры.
Для учащихся старших классов средней школы и студентов младших курсов вузов.