SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В книге исследуются три классических типа уравнений математической физики: эллиптический, параболический и гиперболический. Изложение проводится для пространства любого числа измерений с широким привлечением методов функционального анализа и понятия обобщенных решений. Предназначается для студентов-математиков, а также для аспирантов и научных работников.
Систематически излагается общий функциональный подход к изучению обобщенных стохастических дифференциальных уравнений в частных производных, описывающих многие важные теоретико-вероятностные модели с помощью обобщенных случайных функций. Изучаются граничные свойства обобщенных функций, дается характеризация всех возможных граничных условий для общего (линейного) дифференциального оператора, устанавливается разрешимость общих граничных задач, дается их точное и приближенное решение. На этой основе находятся различные характеристики случайных полей, возникающих в предлагаемой общей теоретико-вероятностной модели, изучается их вероятностное поведение (например, устанавливается марковское свойство), рассматриваются различные задачи прогнозирования, задачи идентификации и оценки параметров самой модели по статистическим данным и др. От читателя предполагается знание основ функционального анализа и теории вероятностей.
В учебнике рассмотрены базовые теоретические понятия и ме-
тоды математического анализа в решении задач прикладного ха-
рактера. Предложены основы математического моделирования
и методика анализа и обработки статистических данных для реше-
ния задач в области землеустройства и кадастра.
Издание предназначено для обучающихся по направлению
подготовки Землеустройство и кадастры, а также для преподавате-
лей вузов.
Монография посвящена теории нелинейных уравнений в частных производных для действительных и комплексных функций, обладающих операторной структурой. Найдена комплексификация иерархии уравнения Кортевега – де Вриза и иерархия возмущенного уравнения Кортевега – де Вриза с оператором рассеяния четвертого порядка. Исследованы интегрируемые случаи полученных уравнений. Построены точные решения методами солитонной математики.
Для научных работников, математиков, специалистов в области нелинейных уравнений, аспирантов и студентов старших курсов соответствующих специальностей.