SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
… По сравнению с ранее вышедшими курсами интегральных уравнений настоящая книга имеет ряд особенностей. Прежде всего, здесь не различаются случаи конечного и бесконечного промежутков интегрирования. Ядро уравнения подчиняется условию квадратичной суммируемости по основному квадрату. В некоторых случаях налагается дополнительное требование ограниченности однократного интеграла от квадрата ядра; при этом условии удается доказать регулярную сходимость ряда Неймана и ряда Гильберта - Шмидта, а также некоторые теоремы об ограниченности или непрерывности решений интегральных уравнений. Подробно исследуются уравнения со слабой особенностью в многомерных пространствах, что важно для многих приложений…
В книге исследуются три классических типа уравнений математической физики: эллиптический, параболический и гиперболический. Изложение проводится для пространства любого числа измерений с широким привлечением методов функционального анализа и понятия обобщенных решений. Предназначается для студентов-математиков, а также для аспирантов и научных работников.
В книжке кратко и в популярной форме излагаются те вопросы, связанные с системами уравнений первой степени, которые недостаточно освещаются в школьном курсе алгебры.
Отдельные параграфы книги были предметом тематических занятий математического кружка для школьников при Смоленском педагогическом институте имени К. Марка.
Книга рассчитана на учащихся старших классов средней школы; отдельные части ее могут быть использованы также учащимися техникумов, студентами младших курсов и учителями средних
школ.
Рассматриваются проблемы разрешимости задачи Коши для
уравнений соболевского типа высокого порядка. Доказываются теоремы существования и единственности решения, исследуется фазовое пространство. Для уравнений соболевского типа второго порядка строятся семейства вырожденных косинус, синус оператор-функций и M,N-функций. Абстрактные результаты иллюстрируются конкретными начально-краевыми задачами для неклассических уравнений математической физики.
Книга предназначена для специалистов в области дифференциальных уравнений и математической физики, а также
аспирантов и студентов старших курсов соответствующих
специальностей.
В монографии рассматриваются несовместные системы линейных уравнений и неравенств и несобственные и неустойчивые задачи линейной оптимизации. Полученные методы матричной коррекции используются для построения непротиворечивых моделей задач классификации и прогнозирования.
В брошюре содержится исчерпывающее изложение учения о системах линейных уравнений, опирающееся лишь на элементарные преобразования матриц.
Для широкого круга читателей, включая школьников старших классов, интересующихся математикой.
В книжке кратко и в популярной форме излагаются те вопросы, связанные с системами уравнений первой степени, которые недостаточно освещаются в школьном курсе алгебры.
Отдельные параграфы книги были предметом тематических занятий математического кружка для школьников при Смоленском педагогическом институте имени К. Маркса.
Книга рассчитана на учащихся старших классов средней школы; отдельные части ее могут быть использованы также учащимися техникумов, студентами младших курсов и учителями средних школ.