SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Предмет книги лежит на стыке алгебры и математического анализа. Излагаемая система фактов и алгоритмов открывает возможности эффективного исследования конкретных дифференциальных уравнений, возникающих в качестве математических моделей в физике, механике, теории управления,
вычислительной математике и других областях знания. В книге излагается общая теория локальных групп Ли преобразований и алгебр Ли операторов, теория инвариантов и инвариантных многообразий. Рассматриваются вопросы групповой классификации дифференциальных уравнений и их решений. Даются примеры применения техники группового анализа к конкретным системам дифференциальных уравнений.
Настоящая монография возникла в результате совместной работы авторов в качестве руководителей ряда семинаров в Московском университете. Это в значительной мере определило содержание книги. Она не ставит своей целью дать энциклопедию качественных методов в теории дифференциальных уравнений; выбор материала обусловлен научными интересами авторов и общим направлением московской математической школы. Разбираемые в этой книге темы объединены одной общей идеей: по существу это теория геометрических и даже, точнее, топологических свойств семейства интегральных кривых. Некоторым отступлением от этой программы являются главы II и III, где рассматриваются также аффинные инварианты этого семейства, а также глава V, где мы имеем дело с метрической геометрией семейства интегральных кривых. Ввиду такого плана монографии в ней, в частности, совершенно не представлена столь богатая результатами и приложениями теория устойчивости по Ляпунову, бесспорно относящаяся к качественной теории дифференциальных уравнений.
Обширная монография одного из крупнейших немецких математиков содержит систематическое изложение качественной теории дифференциальных уравнений. В ней рассматриваются вопросы устойчивости, поведение систем в окрестностях особой точки и т. п. Особое внимание уделено двухмерному случаю. Книга должна найти широкий круг читателей - математиков (начинающих и специалистов) и научных работников различных специальностей.
В книге американских математиков Э.А.Коддингтона и Н.Левинсона дается оригинальное изложение теории обыкновенных дифференциальных уравнений. Представлены следующие разделы: теоремы существования и единственности, линейные уравнения, аналитическая теория дифференциальных уравнений, асимптотика, задачи на собственные значения, теория возмущений, теория Пуанкаре—Бендиксона и теория дифференциальных уравнений на торе. К каждой главе приложено большое число задач; при этом наряду с легкими имеются задачи повышенной трудности. В большинстве случаев трудные задачи сопровождаются указаниями авторов, облегчающими их решение.
Книга будет очень полезна всем математикам, физикам и инженерам, так или иначе соприкасающимся с дифференциальными уравнениями. Она может быть использована в качестве учебного пособия для студентов и аспирантов физико-математических факультетов.
Книга Э. Камке является единственным в мировой литературе справочником по дифференциальным уравнениям в частных производных первого порядка для одной неизвестной функции. В ней лается конспективное изложении важнейших разделов теории и собрано около 500 уравнений с решениями.
Книга предназначена для широкого круга научных работников и инженеров, сталкивающихся в своей практической деятельности с дифференциальными уравнениями. Значение этого справочника особенно велико в связи с тем, что в настоящее время на русском языке нет книги, в которой бы всесторонне и полно освещалась теория вопроса.
В настоящей книге изложено с некоторыми дополнениями содержание лекций, читанных в течение ряда лет студентам и аспирантам МГУ. Задачей курса было познакомить слушателей с классическими вопросами теории аналитических функций, выходящими за пределы содержания курсов и учебников по основам теории аналитических функций. Аналитическая теория дифференциальных уравнений, помимо своих собственных задач и методов, дает чрезвычайно удобный материал для ознакомления с перечисленными выше вопросами. С этой точки зрения и написана настоящая книга. При ее составлении автор использовал ряд заметок, сделанных на лекциях слушателями.
Пособие охватывает все разделы курсов «Дифференциальные и интегральные уравнения. Вариационное исчисление». По каждой теме кратко излагаются основные теоретические сведения; приводятся решения стандартных и нестандартных задач; лаются задачи с ответами для самостоятельной работы.
Для студентов вузов, обучающихся по специальностям «Физика»
и «Прикладная математика».
Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 5 охватывает все разделы учебных программ по дифференциальным уравнениям для университетов и технических вузов с углубленным изучением математики. Наряду с минимальными теоретическими сведениями в нем содержится более семисот детально разобранных примеров. Среди вопросов, нестандартных для такого рода пособий, следует отметить примеры по теории продолжимости решения задачи Коши, нелинейным уравнениям в частных производных первого порядка, некоторым численным методам решения дифференциальных уравнений.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
В пособии содержатся все традиционные разделы курса обыкновенных дифференциальных уравнений. Излагаются важные как в теоретическом, так и в прикладном отношении разделы по теории дифференциальных уравнении с аналитическими правыми частями и по теории устойчивости движения.
Этот обзор посвящен, в основном, локальной теории обыкновенных дифференциальных уравнений. В него не включена
теория бифуркаций; ей будет посвящена отдельная статья. Метод усреднения излагается в обзоре В. И. Арнольда, В. В. Козлова, А. И. Нейштадта «Математические аспекты классической и небесной механики» (т. 3 настоящего издания).