SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Не будет преувеличением сказать, что за последние годы в области «эйлероведения» сделано больше, чем за весь XIX век. При этом подверглись основательному пересмотру многие оценки и взгляды, которые приобрели силу традиции. Но изучению геометрического наследия Эйлера уделялось мало внимания. Аналитический гений Эйлера прославляли все, кто о нём писал, и прославляли по заслугам.
Зато в тени оставалось многое другое. Он перестал вычислять и жить — так говорит о его кончине Кондорсе. Как обычно в XVIII веке, Кондорсе называет Эйлера геометром — слово математик не было тогда в ходу, — но меньше всего он имеет при этом в виду геометрическое зрение, геометрическую изобретательность в нашем понимании.
Через полтора века после Кондорсе и Фуса — авторов первых общих характеристик Эйлера-учёного — его знаток и почитатель Н. Н. Лузин находит яркие краски для портрета Эйлера, но именно Эйлера — виртуоза аналитической выкладки, чувствующего живую плоть формулы. Такая односторонняя характеристика Эйлера-математика господствует.
В 1755 г. Петербургская Академия Наук выпустила в свет одно из самых замечательных произведений математической литературы — «Дифференциальное исчисление», принадлежащее перу члена Петербургской Академии Леонарда Эйлера. Как и большинство научных трудов в эту эпоху, оно было написано на латинском языке. Русский его перевод появляется сейчас впервые. По этому произведению в течение целого столетия учились математики всего мира; особенно сильное влияние оказало оно на преподавание и развитие математики в России.
И хотя в наше время труд Эйлера уже не может служить учебником дифференциального исчисления, однако и теперь он представляет большой интерес. Богатство содержания, изумительное мастерство приёмов, гениальная изобретательность в решении труднейших вопросов, величавая простота изложения и несравненные педагогические достоинства — всё это делает чтение «Дифференциального исчисления» чрезвычайно поучительным и вместе с тем увлекательным для учащегося и для педагога, для математика и для историка науки.
«Введение в анализ бесконечных» Леонарда Эйлера в настоящем двухтомном издании впервые станет полностью доступным для нашего читателя: первое русское издание 1936 г. осталось незаконченным, вышел только первый том.
Существует мнение, что второй том «Введения» (геометрический) уступает первому (аналитическому) по богатству оригинальными результатами, однако и он занимает почётное место среди классических произведений математической литературы, и математику ознакомление с «Введением в анализ» Эйлера в полном объёме даст очень много.
Эта брошюра основана на лекциях, дважды прочитанных автором в Красноярской краевой летней школе по естественным наукам школьникам, окончившим 10-й класс.
В ней кратко объясняются основные понятия математического анализа (производная и интеграл) и даются простейшие приложения к физическим задачам, основанные на составлении и решении дифференциальных уравнений.
Брошюра рассчитана на широкий круг читателей: школьников, студентов, учителей.
В основе музыки лежит музыкальный тон, или звук, определённой высоты, представляющий собой колебательный процесс в воздухе с некоторой частотой. Хотя наше ухо воспринимает тоны с достаточно широким диапазоном частот, в музыке мы пользуемся сравнительно небольшим числом тонов.
Вопрос о том, какие именно тоны должны содержать музыкальная шкала, решается математическими методами. Этому и посвящена настоящая брошюра, в основу которой легла лекция, прочитанная автором в школьном математическом кружке при МГУ.
Основными понятиями математического анализа являются понятия производной и интеграла. Эти понятия не являются элементарными; в любом систематическом курсе математического анализа им предшествуют теория вещественных чисел, теория пределов, теория непрерывных функций. Такая предварительная подготовка необходима, чтобы сформулировать понятия производной и интеграла в достаточно универсальном виде, с применениями к возможно более широкому классу функций.
Но если ограничиться лишь сравнительно узким классом рациональных функций и использовать наглядный язык графиков, можно рассказать о производной и интеграле на небольшом числе страниц, притом достаточно аккуратно и вместе с тем содержательно. В этом и состоит задача настоящей брошюры, рассчитанной на широкий круг читателей; уровень знаний школьника 9-10 класса вполне достаточен, чтобы понимать все, о чем здесь будет идти речь.
Третье издание отличается от первого лишь немногими изменениями. Самое существенное из них состоит в том, что я вычеркнул «принцип индукции» из числа основных положений, вследствие чего все опиравшиеся на этот принцип доказательства пришлось заменить другими.
Я надеюсь, что для большинства читателей я этим облегчил усвоение книги, так как мне представляется, что этот принцип и опирающиеся на него рассуждения предъявляли читателю в отношении логической культуры требования несколько более высокие, чем это вообще принято в настоящей книге.
Из других изменений заслуживают быть отмеченными только новая трактовка формулы Тейлора и параграфа о функциях с ограниченным изменением.
Эта небольшая книжка написана на основе лекции, прочитанной автором в школьном математическом кружке при МГУ.
В ней излагаются простейшие приемы построения графиков функций на примерах прямой и обратной пропорциональной зависимости и многочленов второй степени.
Показано, как, пользуясь этими графиками, строить графики более сложных функций.
Брошюра рассчитана на учащихся старших классов.
В брошюре рассказывается (для школьников 7 { 11 классов) о методе математической индукции на примере 29 задач, из которых 19 снабжены подробными решениями.
Начиная с рассуждения Галилея о том, что скорость падения тела не может быть пропорциональна пройденному пути, мы приходим к определению логарифма как площади под гиперболой и экспоненты как обратной (к логарифму) функции.
Брошюра написана по материалам лекции для школьников 10{11 классов, прочитанной автором по приглашению А. В. Спивака.